
April 8, 2003 Version 2 for Java
on Unix

9990 Lee Highway, Suite 270
Fairfax, Virginia 22030

http://www.ocsystems.com

 Use of

accom-

ompi-
ams)

isted
ective

eck,
Notice

OC Systems retains all ownership rights to the programs and documentation that make up RootCause®.
RootCause is governed by the license agreement accompanying your original media.

Only you and your employees and consultants who have agreed to the above restrictions and those of the
panying license may use RootCause.

You may not defeat or circumvent the license protection features built into the programs, if any.

Your right to copy RootCause and this manual is limited by copyright law. Making copies, adaptations or c
lation works (except copies of RootCause for archival purposes or as a necessary part of using the progr
without prior written consent of OC Systems is prohibited.

OC Systems provides this publication “as is” without warranty of any kind, either express or implied.

Copyright 2003 OC Systems Inc. All rights reserved.

Aprobe and RootCause are registered trademarks of OC Systems.

The trade names Ultra, Solaris, and WorkShop are property of Sun Microsystems, Inc. IBM and AIX are reg
trademarks of International Business Machines Corporation. Other trademarks are property of their resp
owners.

The RootCause development team includes Vince Castellano, Oliver Cole, Ivan Cvar, Dick Efron, Tom Fl
Vasya Gorshkov, Kevin Heatwole, Paul Kohlbrenner, Steve North, Andy Platt, and Larry Preston.
iii

iv

Contents
CHAPTER 1 Introducing RootCause
What Is RootCause? 1-1
Java, C++, or Both? 1-2
About This Guide 1-2

CHAPTER 2 Installing RootCause
Getting Help 2-1
On-line Documentation 2-2
System Requirements 2-2
Reading the CD 2-5
Installing From A Compressed Tar File 2-5
Preparing to Install 2-6
RootCause Console Installation 2-7
RootCause Agent Installation 2-7
Uninstalling RootCause 2-8
Licensing 2-8

CHAPTER 3 Terminology and Concepts
The RootCause Product 3-2
The RootCause Registry 3-3
The RootCause Log 3-3
Aprobe Product 3-3
RootCause Data Management 3-4
RootCause Overhead Management 3-7
Glossary 3-9
v

CHAPTER 4 Getting Started
The Setup Script 4-1
The RootCause Process 4-2
Enabling RootCause for an AIX Application 4-4

CHAPTER 5 RootCause Demo
Set Up 5-2
Run With RootCause 5-3
View the RootCause Log 5-4
Create a RootCause Workspace 5-6
Define the Trace 5-8
Trace With RootCause 5-10
View The Data Index 5-11
Examine and Revise the Trace 5-13
Tracing The Details 5-16
Where To From Here? 5-20

CHAPTER 6 Deploying the RootCause Workspace
Installing The RootCause Agent 6-1
Building a “Traceable” Application 6-2
Deploying A RootCause Workspace 6-2
Registering a Deployed Workspace 6-3
Collecting Data At The Remote Site 6-3
Formatting and Viewing the Remotely-Collected Data 6-4

CHAPTER 7 RootCause Files and Environment Variables
Workspace 7-1
UAL File 7-1
XMJ File 7-2
Data (APD) File 7-2
Process Data Set 7-2
Deploy File 7-2
Collect File 7-2
Decollection 7-2
RootCause Registry 7-2
RootCause Log 7-3
.rootcause Directory 7-4
rootcause.properties 7-4
setup Script 7-4
Environment Variables 7-5
vi

CHAPTER 8 RootCause GUI Reference
Workspace Browser 8-1
New Workspace Dialog 8-9
Reset Program Dialog 8-10
Add UAL Dialog 8-11
RootCause Options Dialog 8-12
Edit Source Path Dialog 8-16
Edit Class Path Dialog 8-16
Java Path Dialog 8-17
UAL Options Dialog 8-17
Java Exceptions Configuration Dialog 8-18
Run Program Dialog 8-19
Deploy Dialog 8-19
Decollect Data Dialog 8-21
Trace Setup Dialog 8-21
Find In Program Contents Dialog 8-26
Global Trace Options Dialog 8-27
Edit Wildcard Strings Dialog 8-28
Generate Custom XMJ Dialog 8-29
New Class Dialog 8-29
Trace Data Dialog 8-30
Add Process Data Dialog 8-30
Trace Index Dialog 8-31
Select Data Files Dialog 8-34
Select Events Dialog 8-34
Find Text In Events Dialog 8-35
Trace Display 8-35
Find Text in Trace Events Dialog 8-43
Table Dialog 8-43
Platform-Specific GUI Issues 8-47
vii

CHAPTER 9 RootCause Command Reference
RootCause and Different Shells 9-2
rootcause 9-3
rootcause build 9-4
rootcause collect 9-5
rootcause config 9-6
rootcause decollect 9-7
rootcause deploy 9-8
rootcause format 9-9
rootcause log 9-11
rootcause merge 9-12
rootcause new 9-13
rootcause_off 9-14
rootcause_on 9-14
rootcause open 9-15
rootcause register 9-17
rootcause run 9-19
rootcause xrun 9-19
rootcause status 9-19

CHAPTER 10 Selected Topics
RootCause and Efficiency Concerns 10-1
Solaris SETUID, and Security Concerns 10-3
64 bit applications 10-9
Logging Controls 10-9
Multiple Application Tracing 10-9
Multiple Executions of a Single Application 10-10
Libraries with No Debug Information 10-11
Your Application and Different JREs 10-12
Using RootCause on an Application with an Embedded JVM10-12
Tracing Java and C++ In One Program 10-13
RootCause J2EE Support 10-14
RootCause Shipped as Part of Your Application 10-16

CHAPTER 11 Custom Java Probes
A Simple Example 11-1
Applying One Probe to Many Methods 11-4
Using Method IDs 11-5
Logging Data from Java 11-7
The onLine() Method 11-8
Advanced Custom Java 11-10
viii

ix

CHAPTER 1 Introducing RootCause
lve a
lta-
 We
se

ion

and

pace
has
or-
eate

sup-
e
t as

cus-
What Is RootCause? RootCause is a sophisticated tool designed to help software organizations so
problem as quickly as possible, ideally from a single occurrence, while simu
neously reducing support costs. Fundamental to this is a tracing capability.
have designed RootCause to make powerful application tracing and root cau
analysis as simple as possible.

The fundamental concept is that all of the data needed to debug an applicat
problem is recorded in its RootCause workspace. The RootCause Console
Graphical User Interface (GUI) allows you to choose the data to be collected
to navigate the collected data.

When an application problem occurs, the “user” sends the RootCause works
to the support organization as the problem report. If the support organization
defined the trace correctly, this RootCause workspace contains sufficient inf
mation to do the root cause analysis of the problem. There's no need to recr
the problem or ask the user further questions.

The RootCause Console tools are used in the application development and
port environments to define what to trace and also ultimately to view the trac
data. The application being traced may be run in the development environmen
well, of course; or it may be run remotely, on a separate test platform or on a
tomer's computer, without access to the development environment.
1-1

Java, C++, or Both?

nt
d

 the
.

e is
ati-

the
rds.

sted

this
ries
, you
a-

rs on
un-

 of

on of
com-

you
es
You can choose to deploy the RootCause trace to the application environme
after a problem occurs, or you can include RootCause as part of your shippe
application so that any time a problem occurs you can immediately examine
data collected by RootCause to perform a root cause analysis of the problem

Note that RootCause is designed to work on shipped applications. No chang
needed to your application or your build processes! The traces will be autom
cally inserted into your application when a copy of it is loaded into memory;
traces remain only while your application is running, and they vanish afterwa

Java, C++, or Both? RootCause is packaged asRootCause for Java andRootCause for C++. This is
the user’s guide for theJava version only. You should read the documentation
and do the demos that correspond to the version of RootCause you’re intere
in.

The differences in features betweenRootCause for JavaandRootCause for C++
are determined solely by the license key(s) you are issued by OC Systems. If
isn’t the version you want, or you want to use RootCause on native code libra
loaded by Java, or Java run as applets or beans from a compiled application
will need licenses to enable both the Java and C++ features. For more inform
tion see"Licensing" on page 2-8, and"Tracing Java and C++ In One Program"
on page 10-13.

About This Guide This User's Guide describes version 2 of the RootCause product for Java use
the Unix platform. Your feedback is desired, both on problems that you enco
ter and on suggestions of how the product could better accomplish its goals
solving problems from a single occurrence and of reducing support costs.

Please e-mail feedback to support@ocsystems.com and indicate what versi
RootCause you are using. The version number can be obtained by with the
mandrootcause help .

If you are evaluating RootCause, or you are a first time user, we suggest that
install RootCause in a local directory (no special system administrator privileg
are needed) and do the demonstrations outlined inChapter 5, "RootCause
Demo". Then return to this manual to get specific questions answered. If the
information is not clear, let us know.

Chapter 2, "Installing RootCause" discusses the installation of RootCause.
1-2 Introducing RootCause

About This Guide

This

e

le

to do

r

r-

,

or the

t ver-
Chapter 3, "Terminology and Concepts" introduces some terminology and con-
cepts that RootCause users should know to make best use of the product.
chapter also contains aGlossary.

Chapter 4, "Getting Started"discusses how an individual user would set up to us
RootCause after it is installed and gives a quick description of getting started
with RootCause.

Chapter 5, "RootCause Demo"demonstrates how to apply RootCause to a simp
program.

Chapter 6, "Deploying the RootCause Workspace" explains how to define a
RootCause trace session at your local site and then send it to a remote site
remote debugging.

Chapter 7, "RootCause Files and Environment Variables" discusses the environ-
ment variables and files that affect RootCause.

Chapter 8, "RootCause GUI Reference"describes the RootCause Graphical Use
Interface in detail, briefly describing each dialog, menu item, and button.

Chapter 9, "RootCause Command Reference" describes therootcause com-
mand line.

Chapter 10, "Selected Topics" contains technical discussions for issues of inte
est to RootCause users.

Chapter 11, "Custom Java Probes" describes how one can write probes for Java
in Java.

Problems and platform-specific issues are discussed in the Release Notes f
current release of the product.

Check our web site at www.ocsystems.com for white papers and the newes
sion of the product.
Introducing RootCause 1-3

About This Guide
1-4 Introducing RootCause

CHAPTER 2 Installing RootCause
Con-
ou to
Cause
tes

use
be

 by
ole
nd

ny
ter-
The RootCause product consists of two major components: the RootCause
sole and the RootCause Agent. The RootCause Console component allows y
create probes and examine the trace data generated by the probes. The Root
Agent is the component that performs the actual runtime tracing and genera
the trace data.

Every user of RootCause will install the RootCause Console and the RootCa
Agent on a local computer in order to be able to create probes and view pro
data for the local computer as well as remote computers.

The RootCause Agent may then be installed on all remote computers where
RootCause will be deployed (i.e. where remote applications are to be traced
the RootCause product). Note that you may also install the RootCause Cons
component on any and all remote computers if you wish to develop probes a
view their trace data locally on the remote computers.

Getting Help If something is missing, or you need a different media format, or you have a
other installation or configuration problems, please contact OC Systems by in
net atsupport@ocsystems.com or by telephone at (703)359-8160.
2-1

On-line Documentation

on-

t at

d the
ific
 you

er-
ons

stal-

UI

d

On-line
Documentation

After you've installed RootCause, you can use your HTML browser and the C
sole’s Help menu to view detailed information about use of the product.

The user guides for both RootCause and Aprobe are available in HTML forma
$APROBE/html/index.html , and on the web at
http://www.ocsystems.com/sup_ug_index.html .

The RootCause user guide is available in PDF, in
$APROBE/RootCauseJava.pdf .

System Requirements RootCause interacts very closely with the hardware, the operating system an
Java Runtime Environment on your machine. This section identifies the spec
requirements in these areas. Read this carefully, and contact OC Systems if
have questions.

RootCause for Unix is currently supported on the AIX, Linux, and Solaris op
ating systems. On each operating system, specific compilers and Java versi
are supported. Details are given below:

AIX AIX Hardware requirements
• a POWER or PowerPC architecture workstation

• Approximately 120 megabytes of disk space for a RootCause Console in
lation; about 7 megabytes for the RootCause Agent alone.

• At least 128 megabytes of RAM.

• A display supporting 256 or more colors.

AIX Operating System Requirements
• AIX Version 5.1 or newer is required to run the RootCause Console Java G

and any other tools that operate on a RootCauseworkspace.

• The underlying Aprobe command-line facility works on AIX versions 4.2 an
newer.

AIX Compiler Requirements

A C compiler is required to buildnon-Javaprobes. This compiler is selected at
installation time and may be one of the following:

• IBM C for AIX (xlc) version 3.1 or newer.
2-2 Installing RootCause

System Requirements

ally
o

lla-
• GCC version 2.8.1 or higher

AIX Java Requirements

Java applications must be run using Java version 1.2 or newer, which gener
requires AIX 5.x. RootCause include Java version 1.3.1 for AIX, configured t
enable use with RootCause as described in"Enabling RootCause for an AIX
Application" on page 4-4.

Linux Linux Hardware requirements

Any modern Intel Pentium-based computer.

Approximately 120 megabytes of disk space for a RootCause Console insta
tion; about 7 megabytes for the RootCause Agent alone.

At least 128 megabytes of RAM.

A display supporting 256 or more colors.

Linux Operating System Requirements

Red Hat Linux 7.1 or later, with a version 2.4 kernel or later.

Korn shell (/usr/bin/ksh) must be installed in order to install RootCause.

Linux Compiler Requirements

A C compiler is required to buildnon-Javaprobes. This compiler is selected at
installation time and may be one of the following:

• GCC version 2.95.x or 2.96.

Linux Java Requirements

Java applications must be run using Java version 1.3 or newer.

Solaris Solaris Hardware requirements
• Sparc & UltraSparc, by Sun Microsystems
Installing RootCause 2-3

System Requirements

stal-

inter-

own-
• Approximately 140 megabytes of disk space for a RootCause Console in
lation; about 7 megabytes for the RootCause Agent alone.

• At least 128 megabytes of RAM.

• A display supporting 256 or more colors.

Solaris Operating System Requirements
• Solaris 2.5.1 / SunOS 5.5.1 or higher

• We recommend Solaris 8 or newer since that supports the preferred Java
preter used by the RootCause Console GUI.

• For Solaris version 5.5.1, patch 103627-08 is required. Patches may be d
loaded from http://sunsolve.sun.com/.

Solaris Compiler Requirements

A C compiler is required to buildnon-Java probes. This compiler is selected at
installation time and may be one of the following:

• Sun Workshop C version 4.2 or higher; or

• GCC version 2.8.1 or higher

• NOTE: /usr/ucb/bin/cc may not be used.

Solaris Java Requirements

Java applications must be run using Java version 1.2 or newer.
2-4 Installing RootCause

Reading the CD

e a
t

n-

ire

e.

e.

all

e

Reading the CD The CD-ROM is mounted as a file system, and once mounted is read just lik
hard disk. Depending on the configuration of your system, you may need roo
(superuser) privileges to access or change your CD device. If you don’t have
access to a CD-ROM device, you can request a downloadable version fromsup-

port@ocsystems.com .

AIX On AIX, insert the Aprobe CD-ROM into the CD drive. Then, on the system co
taining the CD drive, mount the CD as a filesystem. If the mount is already
defined (it probably is) then you can just remount it:

$ /etc/mount /cd0

Otherwise you’ll have to create a directory and mount it there, which will requ
root privileges:

$ mkdir /cd0
$ /etc/mount -r -v cdrfs /dev/cd0 /cd0

Linux Linux should automatically mount the CD-ROM when you place it in the driv
You should see it at /dev/cd .

Solaris Solaris should automatically mount the CD-ROM when you place it in the driv
You should see it at/cdrom/cdrom . If you have more than one CD drive in your
system you will have/cdrom/cdrom0 , /cdrom/cdrom1 , etc. so just pick the
correct one.

Installing From A
Compressed Tar File

If your CD-ROM drive is on a separate machine from where you want to inst
you may copy the filerootcause_install_image.tar.Z from the CD to
disk, then ftp that to the desired machine.

Or, you may have downloaded RootCause from OC Systems directly, in a fil
such asRCSol205.tar.Z .

In either case, you may perform the following steps:

1. Copy the.tar.Z file where you wish to install it.

2. Execute the command:

uncompress -c rootcause_install_image.tar.Z | tar -xvf -
Installing RootCause 2-5

Preparing to Install

ts

n

e
ill
3. This will create a new directory, e.g.,rootcause_install_image/ .
You may rename this if you prefer a different name.

4. Follow the instructions below, except that you may install “in place”, by

• starting in the top directory (e.g., rootcause_install_image/), and

• specifying “.” as the installation directory.

Preparing to Install Once you can read the CD-ROM, the next step is to decide where to install i
contents on your hard disk:

1. Examine the README file on the CD-ROM for updates to the installatio
process and the user guide.

2. Determine where on disk you want to install RootCause.

• Choose a new directory which will be visible to all potential users,
and which has sufficient disk space. For the full installation you will
need about 140 Megabytes of space.

• You do not need to have root privileges to do the installation unless
you need those privileges to write into the selected directory.

• RootCause should not be installed in place of an existing installation
unless it is compatible (the first two digits of the version number
match). Otherwise, existing probes and workspaces will need to be
rebuilt.

3. Determine whether you’re using RootCause for C++ or for Java. If you’r
reading this manual, you’re probably using just Java, in which case you w
not need a C compiler and may skip the next step.

4. Determine which C compiler will be used during the installation.

• See “System Requirements” on page 2-2 for a list of suitable com-
pilers. A C compiler is required for building the probes that Root-
Cause will create.

• The installation script will prompt you to state or verify the full path
name of the C compiler to be used during installation. This need not
be the same compiler you will use to build your application(s). Rath-
er it will be used just to compile the APC source code that describes
the generated probes.

• If a suitable C compiler is in your executable PATH, the install script
will offer it as the default compiler. The GCC compiler will be cho-
2-6 Installing RootCause

RootCause Console Installation

y the
e

the

D-

u
C

in
5-1.

nt
ish

he
oot-
sen only if no supported cc compiler is found.

5. Have a RootCause license key ready. If possible, use your mouse to cop
key from another window on your screen so you can simply paste it at th
prompt during installation.

You can complete the RootCause installation process without a license
key, but you'll have to install the key manually later (see “License Key
Installation” on page 2-9).

You are now ready to run the installation script and reply to its prompts about
installation directory, C compiler, and license key with the selections made
above.

RootCause Console
Installation

RootCause is shipped on CD-ROM. You install RootCause by loading the C
ROM and running theinstall_rootcause script found on the CD-ROM, for
example:

/cd0/install_rootcause

where /cd0 represents the CD-ROM directory described under"Reading the CD"
on page 2-5, or else

rootcause_install_image/install_rootcause

as described in"Installing From A Compressed Tar File" on page 2-5

It will ask you to make a few choices, including the directory location where yo
wish to install RootCause. It also asks for the license that was supplied by O
Systems. If you do not have a license, contactsupport@ocsystems.com .

If you have problems with installing RootCause, you may want to read further
this section, otherwise, you are ready to run the “RootCause Demo” on page

RootCause Agent
Installation

This section is only applicable if you want to install only the RootCause Age
component without installing the RootCause Console. This means that you w
to deploy RootCause to a remote computer, and will be creating probes for t
remote computer and viewing the remotely collected probe data using the R
Cause Console component located on a local computer.
Installing RootCause 2-7

Uninstalling RootCause

a

c-
od-
stall
uct

 from
e

t-
te
The RootCause Agent installation package is contained in file
deploy/rootcause_agent.tar.Z located on the RootCause CD and also in
a RootCause Console installation.

To install the RootCause Agent on a remote computer, follow these steps:

1. Transfer file rootcause_agent.tar.Z to the remote computer.

2. Uncompress and un-tar the file, which will create the directory
rootcause_agent:

uncompress -c rootcause_agent.tar.Z | tar -xvf -

3. Run theinstall_rootcause script:

rootcause_agent/install_rootcause

During RootCause Agent installation, you will be prompted for a writable dire
tory into which the product will be installed. You may choose to install the pr
uct in place (i.e., under the rootcause_agent directory you just created), or in
it into an entirely different directory. We recommend that you install the prod
on a local disk.

Note that you willnot be prompted for a license during installation. When you
create a deployable workspace (a.dply file) using the RootCause Console, it
should contain an agent license (provided you have purchased one or more
OC Systems) that allows you to run the RootCause Agent product on remot
computers.

Uninstalling
RootCause

To uninstall RootCause, simply delete the entire$APROBE directory. The Root-
Cause installation itself does not write to any other locations.

The~/.rootcause (or ~/.rootcause_aix or ~/.rootcause_linux)
directory, and the individual workspace (.aws) directories, are considered to be
user data, not part of the RootCause installation itself. If you delete the~/

.rootcause* directory (or any directory referenced by the$APROBE_HOME,
$APROBE_LOG or $APROBE_REGISTRY environment variables) you must re-run
the "setup" scripts as described inChapter 4, "Getting Started".

Licensing The accompanying license agreement describes the terms under which Roo
Cause may be legally used. OC Systems protects its products from illegitima
use by implementing license agreement checks in its software.
2-8 Installing RootCause

Licensing

ens-

s-
ems
s

ause

ill

y.

t
r-
Licensed use of RootCause is checked by the software using the FLEXlm lic
ing system from Globetrotter Software.

RootCause is packaged asRootCause for Java andRootCause for C++. This is
the user’s guide for theJava version only. The differences in features between
RootCause for JavaandRootCause for C++are determined solely by the license
key(s) you are issued by OC Systems.

Obtaining License Keys An demonstration license is generally provided in a cover letter or e-mail me
sage included with the software. When you purchase the product, OC Syst
will request additional system-specific information, and send you license key
generated from this information.

License Key Installation License keys are shipped in either “decimal” or “text” format. The decimal
license string can be supplied by the user when prompted during the RootC
product installation process (see"RootCause Console Installation" above).

Entering an empty license string will postpone the license installation, which w
have to be done manually by editing the$APROBE/licenses/license.dat

file and entering either the decimal or human-readable form of the license ke

For more information on the license key installation and license managemen
refer to the FLEXlm End-User Manual that can be found in PDF or HTML fo
mat in$APROBE/licenses or contact OC Systems as described in"Getting
Help" on page 2-1.
Installing RootCause 2-9

Licensing
2-10 Installing RootCause

CHAPTER 3 Terminology and
Concepts
r-
inol-
.

and
cu-
. For
RootCause® is an extension of the Aprobe® product, a powerful general-pu
pose patching tool that has been in use for years. As such, much of the term
ogy, organization and documentation of RootCause refer to those of Aprobe

Here we describe general terminology and concepts that apply to RootCause
Aprobe, focusing on the RootCause product. A minimal amount of Aprobe do
mentation is supplied here, just enough to support the RootCause definitions
additional information, see the Aprobe user’s guide ($APROBE/Aprobe.pdf).
3-1

The RootCause Product

-
ss.

 like
only
fy

ing

t
 the

 For
ere is

ng
rfor-

to
Cause
tes

nd
t
mote

trans-
The RootCause
Product

We use the termsapplication andprogram interchangeably throughout the Root
Cause product. An application or program is represented by a Java main cla

We use the termprobe when describing what RootCause does: RootCause
“probes” a running application. The probes created by RootCause do things
tracing, timing, data collection and more. Note that these probes are added
to the in-memory copy of the running application; RootCause does not modi
the disk-resident application at all.

Each application that is probed by RootCause is assigned aworkspace. A work-
space is a directory where RootCause can put all of its important files (includ
the data collection files) at runtime.

Each workspace is created and initialized only once, when RootCause is firs
invoked on an application. Thereafter, RootCause automatically manipulates
workspace contents, so users can ignore the workspace during normal use.
each probed application, there is one workspace; and for each workspace, th
one application.

We use the termlog as a verb to describe Aprobe's low-overhead data recordi
mechanism. RootCause logs its data into files in the workspace. For best pe
mance, workspaces should be on a local disk (not remotely mounted).

The RootCause product is invoked by the commandrootcause (see Chapter
9, "RootCause Command Reference") .

The RootCause product consists of two major components: theRootCause Con-
soleand theRootCause Agent. The RootCause Console component allows you
create probes and examine the trace data generated by the probes. The Root
Agent is the component that performs the actual runtime tracing and genera
the trace data.

You can choose to install only the RootCause Agent on a remote computer a
then use the RootCause Console'sdeployoperation to create a workspace for tha
remote computer. The deployed workspace can then be transferred to the re
computer for use by the RootCause Agent there, and the trace data can be
ferred back to the RootCause Console for examination.
3-2 Terminology and Concepts

The RootCause Registry

on-

ess

with
s not
-

fect.
n

nd

fine
on
n
me

ver-

is
The RootCause
Registry

The RootCause Agent is enabled on a per-process-group basis via an envir
ment variable. When rootcause is “on” in your environment, RootCause will
identify and optionally record the creation of every new process and subproc
created in that shell or subshells inherited from that shell in the RootCauselog.If
the main class for the process is listed in the RootCauseregistry, then RootCause
will insert probes into that process to collect data the next time it is launched
(when you registered the program, you specified the workspace associated
the main class and that workspace contains the probes). If the main class doe
appear in the registry, then RootCause allows the process to continue undis
turbed.

The RootCause Log The RootCause log is the central reporting place for RootCause. By default,
RootCause records every process that is started while “rootcause_on” is in ef
RootCause also writes error messages to this file. The default behavior whe
starting the RootCause ConsoleGUI (with the “rootcause open” command) is to
view this log, from which you may read error messages, open workspaces, a
view trace results.

The log is a fixed size, and wraps around to avoid growing too large. Theroot-

cause log command manages attributes of this file.

Aprobe Product Since RootCause is an extension of the Aprobe product, the setup scripts de
an environment variable, APROBE, which identifies the RootCause installati
directory. $APROBE is used throughout this manual to refer to the installatio
directory of the Aprobe and RootCause products. This section introduces so
Aprobe terminology.

As your program executes, tracing data is logged (i.e. written) to an APD
(AProbe Data) file. Almost always, more than one APD file is allocated, and
these files are used in a round-robin fashion (the oldest APD file is always o
written). This set of APD files is referred to as anAPD ring. There is a separate
control file that is used to manage all the files in the APD ring; this control file
named the APD ring file.

APD files are written in a proprietary binary format. Theapformat command
reads APD, UAL and program files and generates readable text.
Terminology and Concepts 3-3

RootCause Data Management

that

re-

ling

the

g”
ing

 has
ttle-
ta-
-
les.

ntu-
or
use

es
 Sys-
RootCause Data
Management

Tracing an application raises a number of questions about managing the data
is recorded.

1. How can trace data be recorded quickly?

2. How can the least amount of data be recorded?

3. How can data recorded by multiple instances of the same program be p
served and organized?

4. How can the total amount of data recorded by bounded, to keep from fil
up the disk?

5. How can users “snapshot” important data to be kept, while still bounding
total data collected?

6. How can users find what they’re looking for in the data that is collected?

To address these issues, RootCause provides an interface to the Aprobe “lo
mechanism which provides powerful and flexible data-recording and formatt
capabilities. Here’s how they work.

Recording Data Quickly Aprobe logging uses memory-mapped files to record the data. Each process
its own set of data files mapped to distinct memory regions, which avoids bo
necks and locking problems when several processes are logging data simul
neously. Thread-safety is managed primarily using a lock-free compare-and
swap mechanism, though some locking is still required when switching data fi

However, even though the files are memory mapped, the contents must eve
ally be written to disk, and this is limited by I/O speeds to the disk device. F
this reason, it is very important that the workspace directory (where RootCa
writes the data files) be “local” (directly connected to the machine where the
traced program is running) and not accessed across the network (e.g., using
NFS). If you are collecting data from a program running on multiple machin
using the same workspace, or have other special requirements, contact OC
tems.
3-4 Terminology and Concepts

RootCause Data Management

om
64-
are

 for-

cess

aved.
ble.

the
g the

-

Recording Less Data The Aprobe “log” mechanism automatically separates the recording of data fr
its display and formatting. For example, timestamps are recorded simply as
bit values at run-time, then formatted as desired later. String literals and labels
also added as part of formatting. This has the added benefit of being able to
mat the same data in multiple ways without rerunning the application.

Data for Multiple
Processes

The data associated with each process is saved in a “Process Data Set”, or “APD
ring”, a directory identified by thePID of that process. The user specifies how
many of these should be saved, and when that limit is reached, the oldest Pro
Data Set is deleted when tracing of a new process is started.

Bounding Total Data As mentioned above, the user specifies how many processes’ data are to be s
In addition, the amount of data saved for each process is also highly configura
The data for each process is treated as a multi-file circular buffer, or “APD ring”.
Each file is called an “APD file” because of its suffix, “.apd”. At the Aprobe level
the user may specify the size of each file, the number of files in each ring; and
number of snapshot files saved. RootCause makes this a bit easier by offerin
following parameters in theRootCause Options Dialog:

• Keep logged data for N previous processes

This specifies the number of Process Data Sets to keep, as described
above.

• Data File Size (bytes)

This specifies the size of each “APD file”.

• Wraparound data logging wraps at N (bytes)

This specifies the total “wraparound buffer” size, which corresponds to
the number of individual data files that are kept for each process before
the oldest start being deleted.

• Total logged data limit per process (bytes)

Files may be preserved even when they might otherwise be deleted, us
ing asnapshot mechanism described below. This parameter allows the
user to set a hard upper bound on the total data per process, even when
many snapshots are taken.
Terminology and Concepts 3-5

RootCause Data Management

ally.
ted
 a
ata
di-

a
ex

n. In

ore
s sur-
t via

 be
ven
er

ol-

rches
m a
with
Data Snapshots RootCause provides a mechanism for a “snapshot” to be taken programatic
This does not copy the data, but rather marks it as “preserved” so it is not dele
by the normal wraparound mechanism described above. RootCause allows
user to identify points during program execution at which a snapshot of the d
is to be taken. At the Aprobe level, users may specify arbitrarily complex con
tions under which a snapshot is taken. This mechanism is used by the
java_exceptions predefined UAL, which causes a snapshot to be taken when
selected Java runtime exceptions occur.

Data Indexing RootCause provides four levels of control in accessing the data:

• theProcess Data Set;

• individualData Files;

• special events in theTrace Index Dialog; and

• individual events in theTrace Display.

Data is generally selected via the Trace Index Dialog, by double-clicking on
Process Data Set in the Workspace Tree, or by clicking the Index button. Ind
entries are shown for the “Last Data Recorded”, and for any snapshots take
addition, any exceptions detected by theexceptions andjava_exceptions pre-
defined UALs may be shown in the Index. (We anticipate additional kinds of
events being available through the Trace Index in future versions.) One or m
events may be selected in the Index, and a Trace Display opened on the file
rounding that event. You can control the size of the context around the even
theRootCause Options Dialog.

From the Trace Index Dialog you can specify what Data Files the Index is to
generated from, and you can add data files from additional processes, and e
additional workspaces. Using the Examine button in the Workspace Brows
you can directly specify which Data Files are to be viewed, without going
through the Index.

Once you have selected which data files to view, you can view all the data c
lected in theTrace Display. This shows all the events ordered by thread or by-
time, and organized as a call tree within each thread. One can do textual sea
through this display for specific events. Data may be added or removed fro
Trace Display at the Data File level, and the RootCause Log may be merged
it as well to show the interaction of multiple processes.
3-6 Terminology and Concepts

RootCause Overhead Management

ropor-
ing.
t in

cus

ati-

f

ns
d
ns.
nd

ed

e

am,
ted

ing
g

RootCause Overhead
Management

After a program has started, the overhead that a RootCause trace adds is p
tional to the number of traced method calls made by the program as it’s runn
Often it’s the case that the most-frequently-called methods are of little interes
the trace, and yet are introducing the most overhead.

RootCause provides several mechanisms to control tracing overhead, and fo
the tracing to the time when it will provide the most information.

Load Shedding RootCause manages tracing overhead byload shedding, a process by which trac-
ing is disabled based on its estimated tracing overhead. This is done autom
cally by default, based on a heuristic analysis of CPU time used by traced
functions. You can disable load shedding, or adjust the heuristics, with theGlo-
bal Trace Options Dialogopened by clicking the Options button at the bottom o
theTrace Setup Dialog.

When viewing the data, if there are any functions that were load shed, a
LOAD_SHED node will appear in theEvent Trace Tree, from which you can
open aLOAD_SHED Table to see exactly which functions were disabled and
when.

Using this table you may change the disposition of some or all of the functio
during the next run. Usually you will simply want to select all the functions liste
and change them to “Don’t Trace” so they aren’t traced at all in subsequent ru
However, occasionally a function will be disabled that is important to trace, a
in this case you may mark that function as “Don’t Shed” to force it to be trac
regardless of the overhead.

Traced methods designated as “Don’t Shed” are marked with a red dot in th
Trace Setup Dialog. You can enable or disable load shedding on a specific
method using theTrace Setup Popup Menu.

Enable/Disable Tracing RootCause provides a mechanism to disable tracing at the start of the progr
(or any other point) and enable it upon entry to (or exit from) a method execu
later on. This is conceptually a global switch that can be turned on and off dur
program execution. So, for example, if your program does a lot of processin
during initialization, but you’re not interested in tracing that, you can:

Select the Program node in theTrace Setup Dialog, and using theProbes Pane
configure a Probe On Program Entry to Disable Tracing.
Terminology and Concepts 3-7

RootCause Overhead Management

want

even

ys-
Then you can select a method that is called at the start of the processing you
to trace and create a Probe On Entry to Enable Tracing.

As with most features available through the RootCause console, you can get
more control and power with a custom probe which directly calls the Aprobe
runtime functionsap_RootCauseTraceEnable() and
ap_RootCauseTraceDisable() to enable and disable tracing only if certain
conditions or data values are detected in the program. Contact support@ocs
tems.com for more information on writing custom probes.
3-8 Terminology and Concepts

Glossary

er
rod-
, but

r-

d to
s

les

the

 a

the

rar-
Glossary Discussion of RootCause and Aprobe requires the use of terms that are eith
specific to the products or assigned a special meaning in the context of the p
uct. Many of these terms are also defined above and elsewhere in this guide
are listed here for easy reference.

ADI file: Aprobe Debug Information file, which contains symbol and line info
mation extracted from amodule for use bydeployed probes onapplications
which have beenstripped of debug and symbol information.

APC: “AProbe C” language, a superset of the C programming language, use
defineprobes. An APC file is a text file containing APC source code. APC file
are compiled into aUAL file using theapc command.

APD file: “AProbe Data” file, containing information written in a compressed
format by thelog command. These files areformatted (generally converted to
text) by theapformat command.

APD ring: A set ofAPD files corresponding to a single execution of anapplica-
tion. There is always one persistent file, “name.apd”, and one or more ring fi
“name-1.apd”, “name-2.apd”, etc., grouped together in a directory having the
same name as the persistent file, but with a suffix corresponding to the PID of
traced process, e.g., “name.apd.12345”.

actions:Operations, generally gathering or counting data, that are applied at
certain point in a program. Actions, combined with the points where they are
applied, make upprobes.

agent:The part of the RootCause product which actually applies and enables
probes, also known as the Aprobe runtime.

apformat: The Aprobe command whichformats (generates text from)APD
files.

application: An executable or JRE together with all the classes or shared lib
ies that it loads, also known as aprogram.

aprobe: The Aprobe command which actually appliesprobes to aprogram.

collect: To identify theAPD files from one or moreworkspaces and compress
them, along with other necessary information, into a single file with the suffix
Terminology and Concepts 3-9

Glossary

al

),

der

that

n-
.clct , usually in preparation for moving from a remote machine back to a loc
Console installation for analysis.

Console:The RootCauseGUI and supporting Aprobe tools (e.g., apc, apformat
through which all development and analysis of traces is performed.

Data File: A file containing RootCause data logged when a process is run un
rootcause; another name for anAPD file.

decollect:To expand a.clct file back into a directory with suffix.dclct for
analysis by the RootCauseConsole.

decollection:the .dclct directory tree created by thedecollect operation.

deployment descriptor file:An XML file with suffix .xmj , which specifies the
conditions under which a Java probe is to be applied, and what information
Java probe needs. SeeChapter 11, "Custom Java Probes".

dynamic module:A class or jar file from which classes are explicitly loaded
after execution has begun. See"Add Dynamic Module" on page 8-5.

deploy: To compress the information in aworkspaceinto a file with a.dply suf-
fix, and transfer that file to aremote computer for tracing anapplication there.

event:any of a number of specially-tagged data itemslogged by RootCause and
shown in theTrace Index Dialog or Event Trace Tree, or printed by the root-
cause format command.

executable:A binary object file containing the entry point of anapplication
which may be run directly; this is distinct from ashared library, which must be
loaded in the context of a running executable.

format: To process the contents ofAPD files into text, or other meaningful out-
put, using the Aprobeapformat command. Data collected by RootCause is ge
erally formatted intoXML before being read into the RootCause Console.

GUI: The Graphical User Interface portion of the RootCauseConsole. SeeChap-
ter 8, "RootCause GUI Reference".
3-10 Terminology and Concepts

Glossary

h
REs.

e)
le-

is
to-

t-

dule as

sed to

l

es
JRE: “Java Runtime Environment”, the environment which directly executes
Java applications. The RootCauseGUI is implemented in Java and so ships wit
a JRE. RootCause for Java allows you to define Java traces for supported J

JVM: “Java Virtual Machine”, the portion of an application (e.g., java, Netscap
which loads and executes Java class files and applets. This is generally imp
mented as a single library within theJRE.

load shedding:The process of dynamically disabling tracing of functions or
methods based on the tracing overhead they introduce into the program. Th
mechanism prevents tracing from slowing down a program too much, and au
matically creates a list of methods to be eliminated from subsequent traces.

local: Referring to the machine and execution environment in which the Roo
CauseConsole is installed, wheretraces, and perhaps the tracedapplication
itself, are developed; the opposite ofremote, where theagent is installed.

log: verb: the recording of data by RootCause info an APD file.

log: noun: the RootCause Log, in which information about processes is
recorded.

module: A loadable object module; anexecutable or shared library. In Root-
Cause for Java, a class and all its supporting classes are managed as a mo
well.

PID: Process ID, the number assigned to each process on the system, and u
uniquely identify eachAPD ring generated bytracing that process.

Process Data Set:The group ofData Files associated with a single process
(PID); another name for anAPD ring.

predefined UAL: A ready-to-useUAL which may be applied to any application
to perform a specific function. Some are provided with RootCause, additiona
ones with Aprobe, and more can be developed by users.

probes:Actions to be performed at specific points in aprogram. Theseactions
are applied at the probe points in memory, without modifying the program fil
on disk.
Terminology and Concepts 3-11

Glossary

ies

rk-

un

ut

e
is

t of
ed

run-
program: An executable or JRE together with all the classes or shared librar
that it loads, also known as anapplication.

register: To associate aprogram with aworkspace, so thattracing will occur
when the program is run with rootcause on.

registry: The database mappingprograms toworkspaces, and recording other
information that must be checked when programs arerun with rootcause on. This
is implemented as a text file named by the environment variable
APROBE_REGISTRY.

remote: Refers to a machine or execution environment separate from that in
which anapplication is developed; the opposite oflocal. In a remote environ-
ment, themodules that make up aprogrammay be fully or partiallystripped, and
theworkspacein which the probes were developed is not accessible, so the wo
space must bedeployed.

run with rootcause on:To execute aprogram in an environment where Root-
Cause is intercepting processes. This is generally done by running the
rootcause_on command, then running the application. (On AIX, use theroot-
cause run command; see"Enabling RootCause for an AIX Application" on page
4-4). Some simple applications may be run directly with the Rootcause GUI R
button.

shared library: A linked object file which may be shared by many programs, b
cannot be run by itself.

shadow header file:A a C header file which provides debug information for th
system library of the similar name. For example, $APROBE/shadow/libc.so.h
a shadow header for libc.so on Solaris

snapshot:A copy of data saved at the point of a notable event. In the contex
RootCause, SNAPSHOTprobesmay be inserted which ensure that the associat
data is preserved.

stripped: An application which was built with debug and symbol information,
but from which that information has subsequently been removed (such as by
ning thestrip(1) command), is referred to as a “stripped” application.

timestamp: a string indicating the “wall-clock time” at which aneventoccurred.
3-12 Terminology and Concepts

Glossary

h
c.

d

g

r

hi-
traceback: A display of the call stack starting with the function/method in whic
the traceback was generated, followed by its caller, then its caller’s caller, et

traces:A subset of probes which quickly record the entry and exit of identifie
functions or methods. These are indicated in theGUI Trace Setup Dialog by
black dots next to the entities containing traces, as distinct fromprobes.

tracing: The process of applying thetraces andprobes in a RootCausework-
spaceto anapplication. We use this term in general to refer to the data-gatherin
that takes place when aregistered application is running with rootcause on.

trigger: The point at which an action takes place. In particular, when defining
probes within theProbes Pane, it may be the entry or exit of a program, thread, o
method.

UAL: “User Action Library”, ashared library defining “useractions” or probes,
and the program points to which they are applied.

workspace:A directory with suffix.aws created and managed by the Root-
CauseGUI androotcause command, which contains thetraces andprobes on
anapplication, theAPD rings generated from those, and scripts forformatting
that data.

XMJ file: Seedeployment descriptor file.

XML: “eXtended Markup Language”, a text language for expressing hierarc
cal information. RootCauseformats theAPD files collected bytracing into an
informal XML syntax which is then consumed by theGUI.
Terminology and Concepts 3-13

Glossary
3-14 Terminology and Concepts

CHAPTER 4 Getting Started
exe-

se

 exe-
irec-

uld
t
ther
The Setup Script Installation of RootCause from CD-ROM or compressed file is covered inChap-
ter 2, "Installing RootCause".

After installation, but each time before you run RootCause, you will need to
cute its setup script. This will set the necessary environment variables (e.g.
APROBE, PATH, etc.). This is typically done by each user's login script becau
it usually needs to be done only once per login session.

The RootCause installation automatically creates a setup script that must be
cuted before RootCause can be run. This script is located in the root of the d
tory where RootCause was installed.

For example, if you installed RootCause in directory /opt/aprobe, then you wo
execute the appropriate one of the following scripts to set up the environmen
before using RootCause. The first of these scripts is for ksh or bsh users; the o
is for csh users:

. /opt/aprobe/setup

or

source /opt/aprobe/setup.csh
4-1

The RootCause Process

r-
ro-
in
a-

th
is-

n-
t
 may

its
You must execute this setup script in your shell every time you log in or othe
wise reinitialize your environment. Therefore it is a good idea to put the app
priate command above in your ~/.profile (for Korn or Bourne shells) or ~/.log
file (for C shell). See “RootCause and Different Shells” on page 9-2 for inform
tion about other shells.

This script defines the APROBE environment variable and appends
$APROBE/bin to your PATH environment variable. It also sets defaults for bo
APROBE_REGISTRY and APROBE_LOG environment variables. If the reg
try does not exist, the setup script will create a default one.

The setup script also defines aliases that are not inherited by subsequent no
login shells you may open, such as with the xterm command. To ensure tha
these aliases are defined (specifically rootcause_on and rootcause_off), you
add the command:

. $APROBE/setup.kshrc

 into your ~/.kshrc file if you are using Korn shell, or the command

source $APROBE/setup.cshrc

into your ~/.cshrc file if you are using C shell.

Now you're ready to run RootCause.

The RootCause
Process

Using RootCause is typically an iterative process with the following pattern:

1. Run your application in the normal way, but with RootCause enabled in
environment, for example:

rootcause_on
java -classpath . TestDriver arg1 arg2
rootcause_off

This will record information about the application in theRootCause Log
file.

NOTE: On AIX, you must use “apaudit java” in the above command in-
stead of just “java” to allow RootCause to log and trace your application.
SeeEnabling RootCause for an AIX Application below.

2. Start the RootCause Console GUI with therootcause open command.
This will open theWorkspace Browser and theTrace Display showing the
contents of the RootCause log file.
4-2 Getting Started

The RootCause Process

.

ou

ied.

 as
use

 a

e
mat

une
obe

l
tion.
3. UseOpen Associated Workspace on the application program listed in the
RootCause log display, and approve the creation of the new workspace

4. Click Setup and define the probes for the application by choosing what y
want to trace in theTrace Setup Dialog. Note that RootCause writes the
probes to separate files, so the application itself remains totally unmodif

5. Execute the application as you normally would, but with rootcause “on”,
in step 1 above. The application need not be executed from the RootCa
GUI, although there is a convenienceRunbutton to do so. This makes it very
simple to use RootCause, even if the application is deeply embedded in
complex system.

6. Click theIndex button to bring up the index of data that was logged for th
newest process in the workspace, and double-click on an item there to for
the trace data collected by the probes, or you can use theExamine button to
directly select the data file(s) you wish to view.

7. In theTrace Display window that appears is a call tree. Here you can:

• Use theFind button to search for specific functions or events in the
data.

• Select a node in the event tree and right-click to bring up theTrace
Display Popup Menu, from which you can disable traces and per-
form other operations.

• Select a _SYN_JAVA_CALL_COUNTS node and useShow Asso-
ciated Table to view and navigate to the methods in the data file(s).

• Select a JAVA_LOAD_SHED node and useShow Associated Table
to view the table of all methods for which tracing was disabled due
to load sheddingduring the run, and disable the tracing of these dur-
ing subsequent runs.

• Save the output as Text or XML for off-line processing

8. When you have completed analyzing the data and modifying the trace to t
the information collected, go back to step 4 to trace parameters or add pr
actions, or return to step 2 to choose another program to trace.

If you wish to run the probes on a remote computer, then there are additiona
steps to send a RootCause workspace to the remote computer before execu
These are discussed in detail inChapter 6, "Deploying the RootCause Work-
space".
Getting Started 4-3

Enabling RootCause for an AIX Application

ded
li-

ubse-

m-

r

ally

t-
assis-
This process is explored using a concrete example in the next chapter,"Root-
Cause Demo".

Enabling RootCause
for an AIX Application

AIX provides no mechanism to cause a shared library to be automatically loa
into every application started. Therefore, the user must explicitly identify app
cations that are to be “intercepted” and recorded in the RootCause log, and s
quently traced using the process described in this document.

To run an executable under RootCause from the command line:

$ rootcause run my_program -opt arg2

or

$ rootcause on
$ apaudit my_program -opt arg2
$ rootcause off

If it is not possible to directly invoke the application’s executable from the co
mand-line, you can simply rename theexecutable to have a.exe suffix, and
replace it with a (soft-link to a) script which will invoke the real application. Fo
example:

$ mv my_program my_program.exe
$ ln -s $APROBE/bin/run_with_apaudit my_program.exe

Therun_with_apaudit script simply re-invokes the program with apaudit as
in the second example above.

When we use the phrase “run with rootcause on” we refer to any of the above
mechanisms.

To enable automatic RootCause actions for Java applications (i.e., those norm
run with the “java” command), you must do this for the nativejava executable.
This is generally not necessary, since you can more easily change “java” to
“apaudit java” at the point of invocation. However, if you want to enable Roo
Cause in your central Java installation, you should contact OC Systems for
tance: different Java versions are configured differently.
4-4 Getting Started

CHAPTER 5 RootCause Demo
 has
od-

g
le.

use

 pic-
on
This demonstration program, included as part of the RootCause installation,
been designed to provide an introduction and overview of the RootCause pr
uct. The program is:

$APROBE/demo/RootCause/Java/Pi.class

It is a simple Java program, which computes the value of Pi by iteration usin
multiple threads. You can find the source in the same directory as the class fi

The goal of this demonstration is to provide an overview of the whole RootCa
process, showing initial definition and tuning of the trace, then collection and
viewing of more detailed data about a specific function. The demonstration
tured in this chapter was performed on Solaris. Output should be very similar
AIX and Linux.
5-1

Set Up

ot-

s

 a
c-
f

Set Up Before running this RootCause Demo, you must install and set up to use Ro
Cause as described inChapter 4, "Getting Started". This will define the APROBE
environment variable which is necessary to use RootCause.

In the instructions that follow, we’ll use$APROBE to refer to the path where
RootCause is installed, for example/opt/aprobe.

Use a Supported JRE Note that only Version 1.2 or higher of the Java runtime environment (JRE) i
supported. You can verify this by typing “java -version”. If it says something
like java version "1.1.6" then that will NOT work. SeeChapter 2, "Sys-
tem Requirements" for more information.

Use a Local Disk We recommend you set your current directory to a disk local to the machine
you’re running on, though this is not required.

Defined X-Windows
DISPLAY

Lastly, make sure your DISPLAY environment variable is set. If you’re using
Windows client that is running X emulator software such as eXceed or Refle
tion, we recommend you move to a Unix display for your initial evaluation. I
this is impractical, see “X-emulators: (Exceed, Reflection)” on page 8-47.
5-2 RootCause Demo

Run With RootCause

s

as
mo

e

Run With RootCause Run the following commands:

rootcause_on
java -classpath $APROBE/demo/RootCause/Java Pi
rootcause_off

Therootcause_on command enables the automatic logging of every proces
that is started, androotcause_off disables this logging. When the Pi class is
“ registered” with RootCause, it will be traced according to your specifications
well as simply being logged. The illustration below shows the set up and de
execution..

NOTE: On AIX, the above process is slightly different than shown above. Th
invocation of the program must be done with therootcause run command
directly. For example, the above sequence is changed to:

rootcause run java -classpath $APROBE/demo/RootCause/Java Pi

See"Enabling RootCause for an AIX Application" on page 4-4.
RootCause Demo 5-3

View the RootCause Log

se

ow;

the

h-
View the RootCause
Log

Enter the following command:

rootcause open

This will open the RootCause main window, and then a view of the RootCau
log. This shows theTrace Display window, the window for viewing all trace
events. On the left is the Event Tree; on the upper right is the source/text wind
and on the lower right is the “details” window. In the text window you will see
some information about the log file.

Locate the APP_START event (in the Trace Event window) associated with
Pi application run earlier. To view information about this event, select the
APP_START node in the event tree with a left click. This will fill in “details”
about that event in the lower right window.With the APP_START Pi node hig
lighted, right-click to bring up theTrace Display Popup Menu.

Click Open Associated Workspace in the popup-menu of the Pi APP_START
event.
5-4 RootCause Demo

View the RootCause Log

o

.

This will open aNew Workspace Dialog with the program name and default
workspace filled in.

This combination: selecting a node in the tree, then using the popup menu t
choose an operation, is the basic way of working within RootCause.
RootCause Demo 5-5

Create a RootCause Workspace

e.
e.
Create a RootCause
Workspace

To complete the creation of a RootCause workspace for the Pi application:

1. Click Ok in theNew Workspace dialogto complete the creation of the work-
space.

2. ClickYesto confirm that you want to register the Pi class with this workspac
This registration is how RootCause determines what applications to trac
5-6 RootCause Demo

Create a RootCause Workspace
You may close the RootCause Log window opened in a previous step.

You now see theRootCauseWorkspace Browser. This is described in detail in
Chapter 8, "RootCause GUI Reference".
RootCause Demo 5-7

Define the Trace

s.

-
ns.

to

en
Define the Trace There are several aspects to a RootCause trace:

• Predefined UALs selected from theWorkspace Tree;

• Method and Line traces selected from theTrace Setup Dialog;

• Probes to gather or preserve data, also selected in theTrace Setup Dialog; and

• User-writen Custom probes as described inChapter 11, "Custom Java
Probes".

In this part of the demo we illustrate the use of Predefined UALs and tracing
method calls; then we’ll return to the Trace Setup Dialog to add some probe
Custom probes are an advanced feature not presented here.

In the RootCause GUI main window, opened in the previous section:

Enable a UAL Under theUALs node in theWorkspace Tree:

1. Check the checkbox next to predefined UAL labeled
java_exceptions.ual , as highlighed in the figure above. Simply check
ing this box will report all user-defined and many predefined Java exceptio

Define Method Traces Now we’ll add traces specific to this application.

2. Click on theSetup button in the button bar.

This will open theTrace Setup Dialog, showing the modules of the application in
theProgram Contents Tree. TheProgram Contents Tree identifies the modules,
directories, packages, classes and methods in the program, and allows you
specify complex actions on each method. See"Java Program Contents" on page
8-22 for a description of the Java hierarchy.

For this demo we'll first just specify a trace on all methods in the Pi class, th
return later to add data and probes.

3. Click on the “lever” icon next to theM Root Java Module node to expand it.
You’ll see the directories in the class path under this.

4. Similarly, expand the firstJ node, which should be the $APROBE/demo/
RootCause/Java directory from the classpath. You should now see theC Pi
node, representing the Pi class.
5-8 RootCause Demo

Define the Trace

nd
5. Click on theCPi node to select it, then right-click to see theTrace Setup Pop-
up Menu.

6. Click Trace All In Pi.

7. Click theOK button at the bottom right of the dialog to record the trace a
dismiss the Trace Setup dialog.
RootCause Demo 5-9

Trace With RootCause

un

 as
he
am

ency
Trace With RootCause As was done in the preceding section,“Run With RootCause” on page 5-3, r
the following commands:

rootcause_on

java -classpath $APROBE/demo/RootCause/Java Pi

rootcause_off

Or, for AIX:

rootcause run java -classpath $APROBE/demo/RootCause/Java Pi

This time, since the program is registered with a workspace, it will be traced
specified in the workspace, and the resulting output will be recorded within t
workspace. There will be some startup delay, but if you notice that the progr
runs slower once started, this is probably because your workspace is being
accessed across the network from your machine. See “RootCause and Effici
Concerns” on page 10-1.
5-10 RootCause Demo

View The Data Index

 is

t

View The Data Index We’re now ready to view the data generated by running with our Trace. This
discussed in detail in"RootCause Data Management" on page 3-4.

In theWorkspace Browser window, do the following:

8. Click theIndex button. This will bring up theTrace Index Dialog for the
most recently generated data.

9. In the Trace Index Dialog, click theSelect Events button.

10. In the Trace Index Dialog,double-click on the second item in the table, the
first item with an Event name of EXCEPTION.

This will open a Trace Display Dialog centered at that EXCEPTION snapsho
event.
RootCause Demo 5-11

View The Data Index
5-12 RootCause Demo

Examine and Revise the Trace

ted

All

d

he
 by
tain

IT

r-

ed

f

Examine and Revise
the Trace

The EXCEPTION trace event selected from the index should appear highligh
in the Trace Display. This was a result of checking java_exceptions under
"Enable a UAL" above.

You see that the exception occurred within the methodPi::calc_pi from the
preceding ENTER node, and see that it occurred before the methodPi.atanin-

vint was entered. These ENTER and EXIT nodes are a result of the “Trace
In Pi” action added under"Define Method Traces" above.

Use the up-arrow key to go the preceding event labeled “Exception” (in mixe
case) to see more information about the exception in theEvent Details Pane in
the lower right, as shown above.

If you scroll to the top of the Event Trace, you will see a number of threads. T
first is the main thread of the Java application; the last two are those created
the application to compute Pi; the rest are created by the JVM itself and con
no traced calls.

The event tree is a call tree, and can be very useful. From an ENTER or EX
node in the tree you can use theTrace Display Popup Menu to:

• remove the called method from the set of methods to be traced,

• find the next reference to the same method in the trace events, or

• go to the method in theTrace Setup Dialog to trace additional information.

As you step to each event, theEvent Details Pane may show additional informa-
tion about that event. See"Trace Display" on page 8-35 for a more complete
description of this window.

Take some time to explore the event tree. Then we will look at using the info
mation available here to revise or “ tune” the trace used in the next run.

Call Counts Useful information about the methods called in your program may be obtain
by looking at the call frequency as shown in the CALL_COUNTS table.

1. Select (left-click) the SYN_JAVA_CALL_COUNTS node, near the end o
the event tree.

2. Right-click (with MB3) to show theTrace Display Popup Menuon this node.
RootCause Demo 5-13

Examine and Revise the Trace

-

,

e.

n

3. Click Show Associated Table. This will open a table listing each called meth
od and the number of times it was called.

4. Select (left-click) the"Pi::<init>" entry in the call count table.

5. Right click to show the popup menu.

6. SelectDeselect Function In Trace Setup in the popup menu.

You can alsoFind Function In Trace Eventsto search for methods in the call tree
and remove them from there.

You can also search for methods in the call tree, and remove them from ther

7. When you've finished making changes to the trace, click theDismiss button
at the bottom of the SYN_JAVA_CALL_COUNTS table window, and the

8. Click theBuild button in the main window.

9. Notice the effects of removing these calls in the next trace we generate.
5-14 RootCause Demo

Examine and Revise the Trace

are

s to
NOTE: In most “real” programs, high-overhead functions selected for tracing
automatically identified and disabled viaload shedding, and are listed in the
LOAD_SHED Table associated with the LOAD_SHED node at the end of the
event tree. This demo doesn’t run long enough for the load shedding heuristic
apply. See"RootCause Overhead Management" on page 3-7 for a general dis-
cussion of load shedding.
RootCause Demo 5-15

Tracing The Details

ds
Tracing The Details So far we have seen how the RootCause process works by:

• enabling a predefined UAL (java_exceptions);

• defining a simple trace from the Trace Setup Dialog;

• running the application under RootCause;

• choosing an event in the Trace Index Dialog;

• viewing events in the Trace Display; and

• modifying the trace by selecting methods from the call counts table.

RootCause allows you to record much more than the entry and exit of metho
and threads. You can record data values and insert probes as well.

Open Trace Setup 1. Click theSetupbutton in the Workspace Browser to return to theTrace Setup
Dialog.

This is just as in “Define the Trace” on page 5-8 above, but this time
we’ll record some details about a specific method,Pi::ataninvint,
rather than tracing everything.

Select A Single Method 2. Expand the Pi class node to see the methods.

3. Select theataninvint method. This will bring up the source code for this
method in theSource Pane, and show a Log Parameters checkbox in theVari-
ables Pane.

Log Parameters 4. Check theParameterscheckbox.
5-16 RootCause Demo

Tracing The Details
Add a Snapshot Probe 5. In that same lower-right area, click on theProbes tab to show theProbes
Pane. Probes in this context are specialactions that can be performed at
points in the currently selected method.

6. Click the “On” checkbox.

7. Where it says No Trigger, select Function Entry.

8. Where it says No Action, select Log Snapshot.
RootCause Demo 5-17

Tracing The Details

ap-

y to
t

ces-
ta to

Pi

la-

ot
9. Where it says ROOTCAUSE_SNAPSHOT, select this and type in “My Sn
shot” and hit Enter.

We’ve now requested that all parameter values be logged (recorded) on entr
methodPi::ataninvint , and also that a data snapshot be taken at this poin
and marked with the Event Name “My Snapshot”.

Note: A snapshot causes data which might otherwise be deleted do to “data
wraparound” to be preserved. In this small demo, a snapshot is not really ne
sary since it doesn’t generate enough data to wrap around and cause old da
be lost. See"Data Snapshots" on page 3-6 for more information.

Save and Build the
Trace

10. Click theOK button at the bottom right of the dialog to save and build the
trace and dismiss the Trace Setup dialog.

Run With RootCause 11. Again, check that rootcause is enabled with either therootcause_on or root-
cause status command. Then run the application by running Java on the
class, as described in “Trace With RootCause” on page 5-10.

Index the New Trace 12. Click theIndex button in the Workspace Browser window.

13. In the Trace Index Dialog that comes up, double-click on the SNAP entry
beled “My Snapshot” to go right to where our new probes were added.

14. Select the “ENTER ataninvint” node immediately preceding the Snapsh
node to see the Parameter values on entry.
5-18 RootCause Demo

Tracing The Details

ll

ill
Find the Calls Of Interest The Trace Display window opened from the Trace Index Dialog operation wi
contain many events, including other calls toataninvint .

15. With the “ENTER ataninvint” node selected, right-click to show theTrace
Display Popup Menu and chooseFind Function In Trace Events.

16. This will bring up theFind Text in Trace Events Dialog with the current
method name filled in. Click Next, and the next occurrence of this string w
be selected. Thereafter you can continue clickingNext, or enter any other
string to search for. You can useFind Text in Trace Eventsfrom any the pop-
up or Edit menu to search for any string in the current Trace Display.
RootCause Demo 5-19

Where To From Here?

ing
wn
Where To From Here? This chapter should have given you a good overview of the process of develop
a trace and gathering data for a program. Now you’re ready to try it on your o
application.
5-20 RootCause Demo

CHAPTER 6 Deploying the
RootCause Workspace
e pro-
uter.

se
aces
ne
ent).

le
ing
sub-

-7
e

efi-
ged
RootCause performs root cause analysis of problems at the user's site, in th
duction system. This chapter discusses how to run traces on a remote comp

Installing The
RootCause Agent

RootCause has two components: the RootCause Console and the RootCau
Agent. The Agent is the subset of RootCause that is used to run RootCause tr
on a remote computer. The Console is the full product that allows one to defi
and view traces as well as run them (that is, the Console also includes the Ag

If you’re just “trying out” the deploy process on a single computer, your Conso
installation can also serve as the remote installation. If you really are deploy
RootCause to a remote site you will want to install just the RootCause Agent
set there, and enable remote execution using RootCause agent licenses.

Follow the installation directions in “RootCause Agent Installation” on page 2
to install the RootCause Agent on the remote computer; this only needs to b
done once per remote computer.

After this is installed on the remote computer, you deploy RootCause trace d
nitions to the remote RootCause Agent and get back files that contain the log
trace data.
6-1

Building a “Traceable” Application

d
eys

ce”

er a

ly
 are

rk-
en-

pli-

ink

mote
ser

ent
The Agent installation does not have its own license—the license is delivere
with the deployed probes. Instead, you will obtain one or more agent license k
from OC Systems and append them to the file

$APROBE/licenses/agent_license.dat

in your RootCause Console installation. Agent licenses will be automatically
copied into the deployed workspace (see “Deploying A RootCause Workspa
on page 6-2). See “Licensing” on page 2-8 for a more in-depth discussion on
licensing issues.

Building a
“Traceable”
Application

Any Java application is traceable with RootCause so long as it’s running und
supported JRE. See"System Requirements" on page 2-2, and “Your Application
and Different JREs” on page 10-12

Deploying A
RootCause Workspace

When you have built and tested the traces and probes, and you want to app
them to an application that exists at (or will be shipped to) a remote site, you
ready to deploy the workspace containing those traces and probes. This wo
space will be your “flight recorder” for the application at the remote site. To g
erate the deploy (.dply) file:

1. Confirm that you’re developing and testing with the same build of the ap
cation you’ll be shipping. See “Building a “Traceable” Application” on
page 6-2.

2. Develop and test your traces locally. When you see the information you th
you’ll need at the remote site, then you’re ready to deploy.

3. Enable theverify predefined UAL in theWorkspace Browserwindow. This
checks the correspondence between the program and modules on the re
system with those in the local (formatting) environment, and alerts the u
when an incompatibility is detected.

4. Click on theDeploy button in the mainWorkspace Browser window. This
will display theDeploy Dialog.

5. In the Deploy Dialog, enter a file name for your deploy file. This file will be
created by RootCause, and it will contain the trace definitions for your curr
workspace.
6-2 Deploying the RootCause Workspace

Registering a Deployed Workspace

i-

e ap-

n(s)
it

the
6. In the Deploy window, click “OK”. RootCause will attempt to create the
dply file. For example, if you’re using the workspace created inChapter 5,
"RootCause Demo", then this will createdply .

The.dply file will also contain the license needed to run RootCause on
the remote computer. When the.dply file is created, the file
$APROBE/licenses/agent_license.dat mentioned in
see “Installing The RootCause Agent” on page 6-1 is automatically in-
cluded. If the license file is not found, or does not contain a license, an
error dialog will appear. If you see this, you can click “Yes” to proceed
with deploying, or “No” if you wish to investigate getting a valid Agent
license.

7. Transfer the.dply file over to the remote computer (be sure to specify b
nary mode if you use ftp).

Registering a
Deployed Workspace

8. On theremote computer open an xterm or other command shell.

9. Register the application on the remote computer using therootcause register
command. For example:

rootcause register Pi.dply

This creates a workspace in the current directory (or a path specified with
the-w option) and registers the workspace with the main Java class.

10. Enable RootCause on the remote computer in the environment where th
plication will be run, using therootcause_on command. Note that this
needs to be done in a parent process of the shell that will run the applicatio
so that the application(s) will inherit the value of the environment variables
sets.

Collecting Data At The
Remote Site

11. Run the application(s) as you normally would.

12. When you want tocollectand examine the RootCause trace data, execute
rootcause collect command on the remote computer. For example:

rootcause collect -c Pi

Many classes may be collected at once by listing them on the collect
command line. The applicable files in each registered workspace will be
compressed into a single.clct file.
Deploying the RootCause Workspace 6-3

Formatting and Viewing the Remotely-Collected Data

x-

c-

b-
Formatting and
Viewing the Remotely-
Collected Data

13. Transfer the.clct file back to the local computer where the RootCauseCon-
sole is installed (be sure to specify binary mode if you use ftp).

14. In the RootCause GUI, click on theDecollect button in the main window.
This will display theDecollect Data Dialog. If the RootCause GUI is not cur-
rently running, you may open the collect file when starting the GUI, for e
ample:

rootcause open file.clct

15. In theDecollect Data Dialog, enter the name of the.clct file and the desti-
nation directory into which the file will be expanded. The destination dire
tory should be empty as thedecollectoperation will expand a number of files
into this directory. Then click “OK”.

This will create adecollection, a directory, with suffix.dclct , contain-
ing the workspaces collected from the remote computer. It will then pro-
ceed with theOpen Decollection operation, which will show aTrace
Index Dialog for the newest data in the decollection.

16. Select the event(s) you wish to view, or useSelect Data Files to change the
data that was indexed.

17. Format the data into a Trace Display. If you used theverify predefined UAL
as suggested in"Deploying A RootCause Workspace" on page 6-2, you’ll see
a TEXT node identifying any mismatches that may cause formatting pro
lems.

18. From the Trace Display for the decollected data, you can useAdd Data Files
To Display to add in the Decollected RootCause Log file and other data.
6-4 Deploying the RootCause Workspace

CHAPTER 7 RootCause Files and
Environment Variables
t
n
pter

c-
n,

ou
, the

tar-
f the
-

se,
auto-
RootCause consists of aGUI to define traces, the Aprobe runtime to implemen
those traces, and a number of directories, files, and variables in the executio
environment which control and record when the traces are applied. This cha
briefly describes those files and environment variables.

Workspace All activity is performed in the context of a workspace. A workspace is a dire
tory which contains all the information about the target program configuratio
the configuration of the trace setup, and the resulting log files.

The contents of the workspace are manipulated by the RootCause GUI. If y
change something within the workspace, such as a script or configuration file
changes may be lost the next time a rootcause GUI operation is performed.

UAL File A user action library (UAL) consists of a set of probes that are attached to the
get program when it runs. The probes are activated when specified portions o
target program are reached. Somepredefined UALs may be selected in the Root
Cause GUIWorkspace Tree, additional ones are provided in the underlying
Aprobe product, and the user can build custom UALs. As a user of RootCau
you do not need to be concerned with these files. RootCause handles them
matically. If you do use the underlying power of Aprobe, then you can create
your own probes and your own UAL files.
7-1

XMJ File

is

;
o

g) of

e a

-
r to

ec-
on

-

XMJ File An XMJ file, also known as aJava Probe deployment descriptor file, is a user-
created text file containing an XML description of Java probes. The DTD for th
is on-line in $APROBE/html/xmj.dtd.

Data (APD) File Aprobe places thelogged data from a tracedexecutable into aData File, also
called anAPD file. For the most part, RootCause users are isolated from this
however, when formatting the data, you can choose the data files you wish t
view or generate an index from. See"Bounding Total Data" on page 3-5 for
more information.

Process Data Set Process Data Sets are used to collect more than one wrap-around set (or rin
data files for a single program. See"Data for Multiple Processes" on page 3-5for
more information.

Deploy File A deploy file (with extension.dply) is created by theDeploy operation in the
RootCause GUI. It contains all the information needed by RootCause to trac
(possiblystripped) program at aremotesite. The deploy file is transmitted to the
remote computer and installed there to enable tracing of the program on the
remote computer.

Collect File A collect file (extension.clct) is created by therootcause collect com-
mand. It contains all the information collected by RootCause for a traced pro
gram at a remote site. The collect file is transmitted from the remote compute
the local computer where it is “decollected” to examine its contents.

Decollection TheDecollect button in the RootCause GUI unpacks a.clct file created by the
rootcause collect command. This creates a directory containing all the d
ollected workspaces. This directory is known as a Decollection (with extensi
.dclct), and is directly accessible using theOpen DecollectionandRecent Dec-
ollections items in the RootCause GUI’sWorkspace Menu.

RootCause Registry To use RootCause on an application, you must firstregister the application by
adding it to your RootCauseregistry. The RootCause GUI will do this automat
ically, and there is a command line interface as well (see therootcause reg-

ister command).

RootCause will only trace applications defined in the RootCause Registry.
7-2 RootCause Files and Environment Variables

RootCause Log

s,
 user
om-
obes

 its

s are
 are
re
n
 file
ning

e

r or

file
On any one computer, there may be one or possibly many different registrie
depending on your desired use. For example, it would be common for each
to have his/her own registry. Also, there may be one registry for the whole c
puter if it is a dedicated server and there is an integrated set of RootCause pr
designed for that server.

The location of the RootCause registry is defined by theAPROBE_REGISTRY
environment variable, and is generally under the.rootcause Directory so that
each user has a separate registry.

All manipulations of the registry are done using therootcause register

command, or via the items in the RootCause GUI’s Workspace menu.

Important: The registry is meant to be manipulated only with therootcause

register command (See “rootcause register” on page 9-17). Do not change
contents by any other means!

RootCause Log The RootCause log file records what programs are started and what program
traced while RootCause is enabled. Programs that are started but not traced
recorded as APP_START events. Programs that are traced by RootCause a
recorded as APP_TRACED events. The RootCause log file may also contai
other messages and debug information as TEXT events. The RootCause log
may be examined in the GUI and used as a starting point for creating or ope
the workspaces associated with programs recorded in the log file.

By default RootCause writes a line to the log file whenever an application isrun
with rootcause on, or fails to run due to an error. If you wish to record only thos
applications that are traced, you may change the verbosity level with theroot-
cause register command.

To log only applications that are registered and probed:

rootcause register -s verbose -e off

To log all applications that are executed when rootcause is enabled, whethe
not they are registered:

rootcause register -s verbose -e on

While becoming familiar with RootCause, you may want to examine the log
often. You can display it using therootcause log command.
RootCause Files and Environment Variables 7-3

.rootcause Directory

th-

gen-
ck-
ng

the
.rootcause Directory The directory

$HOME/.rootcause

is created and used by the RootCause GUI to maintain some user-specific
attributes of your RootCause environment:

• theRootCause Log file is located here by default

• theRootCause Registry is located here by default as well.

• a customizedrootcause.properties file may be placed here.

• apreferences file in this directory contains the recent workspaces and o
er RootCause GUI internal settings.

• temporary files are created here.

The directory is called.rootcause_linux on Linux and.rootcause_aix on
AIX to avoid collisions and confusion on mixed systems sharing a common
$HOME directory.

TheAPROBE_HOME may be used to specify a different location.

rootcause.properties The file

$APROBE/lib/rootcause.properties

defines some properties used to determine the RootCause appearance. In
eral, you need not be concerned with these, but if you wish to change the ba
ground color or other property defined by UIManager you can do so by placi
an edited version of this file in the.rootcause Directory.

setup Script The files $APROBE/setup and $APROBE/setup.csh are provided to define

RootCause environment in your shell. SeeChapter 4, "The Setup Script"for de-

tails.
7-4 RootCause Files and Environment Variables

Environment Variables

ion
you

r

 is

se
i-

lt
envi-
m”.

lly
Environment
Variables

APROBE The APROBE environment variable points to the RootCause product installat
directory, and is automatically defined by the setup script. We suggest that
do not modify this environment variable.

APROBE_HOME The APROBE_HOME environment variable defines a non-default location fo
the.rootcause Directory.

If APROBE_HOME is defined when the $APROBE/setup or setup.csh script
run, theRootCause Log andRootCause Registry files are created under
$APROBE_HOME. In this way, one can have a single system-wide RootCau
environment by setting APROBE_HOME globally, and creating world-access
ble registry and log files there.

APROBE_JRE The APROBE_JRE environment variable specifies a non-defaultJRE (Java
installation) to use instead of the one shipped with RootCause. See"Platform-
Specific GUI Issues" on page 8-47.

APROBE_JAVA_HEAPSIZE

The APROBE_JAVA_HEAPSIZE environment variable specifies a non-defau
Java heap sized to be use by the RootCause console GUI. The value of this
ronment variable is the entire Java parameter value. The default is “-Xmx128

APROBE_LOG The APROBE_LOG environment variable specifies the location of the Root-
Cause Log file (see"RootCause Log" on page 7-3). It is initialized by the setup
script (see"The Setup Script" on page 4-1) to the namerclog under the.root-
cause Directory. If unset, the location $APROBE/arca/rc.log is used. Genera
theRootCause Log andRootCause Registry are kept in the same directory,
defined by the value of theAPROBE_HOME environment variable, so you
shouldn’t have to set this directly.
RootCause Files and Environment Variables 7-5

Environment Variables

e
is

be
tory
-

in

/

ince
first

use

d by

le,

DIT
APROBE_REGISTRY The APROBE_REGISTRY environment variable specifies the location of the
RootCause registry file (see"RootCause Registry" on page 7-2). It is initialized
by thesetup Script to the nameregistry under the.rootcause Directory. If
unset, the location $APROBE/arca/registry is used. Generally theRootCause
Log andRootCause Registryare kept in the same directory, defined by the valu
of theAPROBE_HOME environment variable, so you shouldn’t have to set th
directly.

APROBE_SEARCH_PATH

The APROBE_SEARCH_PATH environment variable identifies directories to
searched by RootCause for source files when the file is not found in the direc
from which it was compiled. If defined, The APROBE_SEARCH_PATH envi
ronment variable is a colon-separated list of directories (like PATH and LIB-
PATH) in which to search for a a source file to display, if the file is not found
the directory recorded in the class file.

For example, if a class is compiled from files in directories /build/common, /
build/console, and /build/gui, and the directory /build has been moved to /old
build, you could do:

export APROBE_SEARCH_PATH=\
 "/old/build/common:/old/build/console:/old/build/gui"

Use of the environment variable to find source files is not usually necessary, s
the RootCause GUI provides an interface for specifying the search path the
time it’s needed, and this path is recorded in the workspace.

The APROBE_SEARCH_PATH environment variable is also used by RootCa
and Aprobe to findobject files that have been moved -- see Appendix A of the
Aprobe User’s Guide.

LD_AUDIT (Solaris) The LD_AUDIT environment variable is recognized by theSolaris operating
system and is used by RootCause to hook into applications that are registere
RootCause. The commandsrootcause_on androotcause_off will set and
unset the LD_AUDIT environment variable for RootCause.

The RootCause setup script does not set the LD_AUDIT environment variab
so you will need to executerootcause_on after the setup script to actually
cause RootCause to start examining each new process for probing. LD_AU
7-6 RootCause Files and Environment Variables

Environment Variables

g

es
 low

f

be
e
ppli-

d by

ri-

cs
t-
is

a-
 Sys-

be
e
ppli-
is a normal Solaris environment variable with the usual semantics about bein
inherited by sub-processes, etc.

At OC Systems, we have set LD_AUDIT at system boot time, so all process
will be examined by RootCause as they launch, to ensure its robustness and
overhead. But you can limit the scope of RootCause by limiting the scope o
where the LD_AUDIT environment variable is set, even though the overhead
imposed by this checking is small.

For Solaris 7 and higher, the LD_AUDIT_64 environment variable may also
set to point at a dummy 64-bit library so that the runtime linker does not issu
warning messages. This library does not invoke RootCause because 64-bit a
cations are currently not supported.

Note that the LD_PRELOAD environment variable isnot used by RootCause on
Solaris.

LD_PRELOAD (Linux) The LD_PRELOAD environment variable is recognized by theLinux operating
system and is used by RootCause to hook into applications that are registere
RootCause. The commandsrootcause_on androotcause_off will set and
unset the LD_PRELOAD environment variable for RootCause.

The RootCause setup script does not set the LD_PRELOAD environment va
able, so you will need to executerootcause_on after the setup script to actually
cause RootCause to start examining each new process for probing.
LD_PRELOAD is a normal Linux environment variable with the usual semanti
about being inherited by sub-processes, etc. You can limit the scope of Roo
Cause by limiting the scope of where the LD_PRELOAD environment variable
set, even though the overhead imposed by this checking is small.

Note that LD_PRELOAD may be used by other tools or even your own applic
tion. In such cases you must take care in updating this variable: contact OC
tems for assistance in this case.

For Solaris 7 and higher, the LD_AUDIT_64 environment variable may also
set to point at a dummy 64-bit library so that the runtime linker does not issu
warning messages. This library does not invoke RootCause because 64-bit a
cations are currently not supported.
RootCause Files and Environment Variables 7-7

Environment Variables

envi-
es a
nd

ions
of

in-
ron-
AP_ROOTCAUSE_ENABLED (AIX)

AIX has no mechanism corresponding to LD_AUDIT or LD_PRELOAD that
allows libraries to be specified at load time, and hence one cannot just set an
ronment variable to start intercepting processes on AIX. Instead, one identifi
program that one may want to intercept, renames the program executable, a
replaces it with a script calledrun_with_apaudit , as described in"Enabling
RootCause for an AIX Application" on page 4-4. This script recognizes the
AP_ROOTCAUSE_ENABLED environment variable, which is defined by the
rootcause_on alias and unset by therootcause_off alias.

RC_WORKSPACE_LOC

When an application isrun with rootcause onand isregistered with aworkspace,
the location of that workspace is defined in the environment variable
RC_WORKSPACE_LOC prior to the application being run with aprobe. This
allows one to use this environment variable to references files in aprobe opt
or within custom probes. This is especially useful in specifying the location
the configuration file needed by a user-defined UAL in theAprobe Parameters
field of theAdd UAL Dialog. This environment variable is also defined when
data is formatted, and so can be used inApformat Parameters as well.

RC_SHORT_WORKSPACE_LOC

If the path to your workspace may contain blanks (such as is common on W
dows platforms), you should use the RC_SHORT_WORKSPACE_LOC envi
ment variable instead of theRC_WORKSPACE_LOC.
7-8 RootCause Files and Environment Variables

CHAPTER 8 RootCause GUI
Reference
ter-
sup-

-

re

k-
This chapter describes all parts of the Rootcause Console Graphical User In
face, or the “RootCause GUI” for short. It is meant to serve as a reference to
plement the text provided by the Help buttons on the windows themselves.

Workspace Browser TheWorkspace Browser is the main window of the RootCause GUI. The Work
space Browser controls the program tracing process.

The Workspace Browser is composed of the following parts:

• theWorkspace Tree on the left side;

• theMessage Pane on the right side;

• the menu bar across the top; and

• theToolbar below the menu bar.

Workspace Tree TheWorkspace Treedisplays information about the current workspace. There a
three sections to this tree:Program node, UALs node, andData node. A Work-
space Tree Popup Menuis provided to perform operations on nodes in the Wor
space Tree.
8-1

Workspace Browser

 to
tup

es
d by

s
Ls
 by

ee.

by

-
nt
tion

ts in
Workspace Tree Popup Menu

Select a node in the Workspace Tree and use the right mouse button (MB3)
display a popup menu. The following operations from the Workspace and Se
menus are provided, depending on the node selected:

• Workspace Menu: Reset Dynamic Module

• Workspace Menu: Delete Dynamic Module

• Setup Menu: Edit UAL

• Setup Menu: Remove UAL

Program node

The program configuration is displayed under the Program node. This includ
the main program and any dynamic modules used by the program as specifie
the user usingAdd Dynamic Module in theWorkspace Menu.

UALs node

The configuration of user action libraries (UALs) is displayed under the UAL
node. The trace predefined UAL is always present, and other predefined UA
are displayed depending upon the local configuration. Each can be selected
checking the box to the left of the UAL name, and disabled by clearing the
checkbox.

NOTE: aBuild operation is required to apply the changes made to the UALs tr

The predefined UALs are program-wide actions that can be optionally applied
clicking the checkbox next to the name. Additional predefined UALs may be
written and added withSetup->Add UAL, or by directly editing the file
$APROBE/ual_lib/predefined_uals .

log_env:Use thelog_env predefined UAL to collect information about the envi
ronment in which the program is running. This information includes environme
variables, the current user and machine, and other information. This informa
will appear in theProgram Information Pane of theTrace Display window.

exceptions:Enable theexceptions predefined UAL to trace C++ (and Ada)
exceptions that occur in the program. These will show up as exception even
theTrace Index Dialog, and a fulltraceback will appear in theEvent Details
Pane of the Trace Display window.
8-2 RootCause GUI Reference

Workspace Browser

ts in

s

ead,
ron-

n

he

l

are
alue

e
es-
java_exceptions:Enable thejava_exceptions predefined UAL to trace Java
exceptions that occur in the program. These will show up as exception even
theTrace Index Dialog, and a fulltraceback will appear in theEvent Details
Pane of the Trace Display window. In addition, some Java run-time exception
will cause asnapshot to be taken as well. The actions associated with specific
Java exceptions may be specified using theJava Exceptions Configuration Dia-
log.

verify: Enable the verify predefined UAL to verify the traced modules are the
same between run-time and format-time. This introduces some startup overh
but is recommended when deploying a workspace for use in a different envi
ment. See"Deploying A RootCause Workspace" on page 6-2.

sigsegv:Thesigsegvpredefined UAL, enabled by default, logs a traceback whe
one of several program-termination signals occurs: SIGQUIT, SIGILL,
SIGABRT, SIGBUS, SIGSEGV, or SIGTERM. The traceback will appear int
Event Details Pane of the Trace Display window.

Data node

The most recentProcess Data Sets are shown under theData node in theWork-
space Tree, most-recent-first. Double-clicking on a PROCESS DATA node wil
open and update theTrace Index Dialog for that data.

Data is recorded when the program registered with the current workspace isrun
with rootcause on. The data is organized per-process into aProcess Data Set, and
is identified by the process id. By default, only the two most recent data sets
kept; older ones are deleted. More data may be preserved by increasing the v
labeled “Keep logged data for N previous processes” in theRootCause Options
Tab tab of Options Dialog opened from theSetup Menu.

Message Pane TheMessage Panedisplays information about the operations performed on th
workspace. A popup menu is accessible (via the right mouse button) in the m
sage pane, and provides access to the operations in theEdit Menu.

Workspace Menu TheWorkspace Menu is the leftmost menu in the Workspace Browser window
and contains many fundamental operations.
RootCause GUI Reference 8-3

Workspace Browser

-
using
yet

e

d.
user

ing
d.

ace

e
er

ll

ed.

ed
ood
ulti-

t of

ful
New: You must have aworkspaceto begin work tracing a program. A single pro
gram is associated with each workspace. You can create a new workspace
New. First the current workspace will be saved, if it has been changed but not
saved. TheNew Workspace Dialogallows you to set the name and location of th
workspace and set the program associated with the workspace.

Open: The user can work with an existing workspace by choosingOpen. First
the current workspace will be saved, if it has been changed but not yet save
Then the user can choose an existing workspace and it will be loaded and the
can resume from where the workspace was last saved.

Save:The current workspace can be saved, if it has been modified, by choos
Save. All information about the program configuration and traces will be save

Save As:The current workspace can be renamed by choosingSave As. The user
will choose the new name of the workspace, and it will be saved to the worksp
file. The new workspacemust be rebuilt using theBuild operation before it can
be accessed by a running program. If a workspace file with the chosen nam
already exists, the user will be asked if the file should be overwritten. The us
can cancel the operation or proceed to overwrite the existing workspace file.

Close:ChooseCloseto close the workspace without exiting RootCause. You wi
be asked if you want to save the workspace, if it is needed.

Recent Workspaces:The most recently visited workspaces can be opened by
choosing them from theRecent Workspaces submenu. The chosen workspace
will be loaded and work can resume from where the workspace was last sav

Open RootCause Log:TheRootCause Logcan be examined by choosingOpen
RootCause Log. The RootCause log records which programs have been start
and which have been traced since RootCause was enabled. This can be a g
starting point for determining which programs should be traced in a large, m
program application suite.

Decollect Collected:ChooseDecollect Collectedto unpack the data collected on
a remote computer (after a deploy operation). The decollected data will consis
one or more workspaces of data. This will open theDecollect Data Dialog to
choose the source (.clct) file and destination (.dclct) directory. Upon success
completion, aTrace Index Dialog is opened to index the newest data within the
decollection.
8-4 RootCause GUI Reference

Workspace Browser

 a

by

se

as

will
.

e

 or
 add

ic

 will
.

Open Decollection:Decollected workspaces, which have been collected from
remote computer, can be examined usingOpen Decollection. The user will
choose adecollection, which was produced by a previousDecollect Collected
operation, and aTrace Index Dialog will be opened.

Recent Decollections:The most recently visited decollections can be opened
choosing them from theRecent Decollectionssubmenu. ATrace Index Dialogis
opened to index the newest data within thedecollection.

List RootCause Registry:The RootCause registry defines what workspaces
apply to which applications. You can list the current contents of the RootCau
registry withList RootCause Registry.

Register Program:The current workspace can beregistered with its corre-
sponding program or class usingRegister Program.

Unregister Program: You can remove the RootCauseregistry entry for the cur-
rent workspace/program withUnregister Program.

Reset Program:You can reset the program associated with a workspace if it h
been rebuilt, or its location has changed. ChooseReset Programto select the new
version of the program. When the program is reset, the existing trace setup
be checked against the new version, and any invalid traces will be discarded
Traces are invalid if the method/data no longer exists in the program.

Add Dynamic Module: Any number of runtime-loadeddynamic modules can
be added to the program configuration by choosingAdd Dynamic Module. The
user will then select the dynamic module through a file chooser dialog. If this
module is not already part of the program configuration it will be added to th
program configuration and displayed in the workspace tree. You can choose
either a class file or JAR file to be the program. You can add other class files
JAR files as dynamic modules. If you have a C++ license also, you can also
shared libraries to trace JNI calls as well.

Reset Dynamic Module:You can reset a dynamic module associated with a
workspace if it has been rebuilt, or its location has changed. Select a dynam
module in the workspace tree then chooseReset Dynamic Module to select the
new version of the module. When a module is reset, the existing trace setup
be checked against the new version, and any invalid traces will be discarded
Traces are invalid if the method/data no longer exists in the module.
RootCause GUI Reference 8-5

Workspace Browser

a
ing
le

d
-
n
this

u
 here
8,
also
in-

the

ys-

 you

e

Delete Dynamic Module: You can remove a dynamic module associated with
workspace by selecting a dynamic module in the workspace tree and choos
Delete Dynamic Module. When a module is deleted any traces within the modu
will be lost.

Update J2EE Modules:You can add or change the J2EE modules associate
with a workspace withUpdate J2EE Modules. This pops up a File Chooser dia
log with which you enter the directory where deployable Enterprise Java Bea
(EJB) and Servlet classes and jars reside. If you’ve already specified a path,
will cause that to be re-read and the list of Java modules updated. See"Root-
Cause J2EE Support" on page 10-14 for more information.

Exit: ChooseExit to terminate the RootCause GUI. You will be asked if you
want to save the workspace, if it is needed.

Edit Menu TheEdit Menu supports Copy/Cut/Paste/Delete from the Message pane. If yo
are using RootCause on a version of Solaris less than 8, the Copy operation
is the only way to copy text from the Message window. If you are using Solaris
the normal mouse copy/paste operations work directly. These operations are
available on a popup (context) menu by right-clicking within the Messages w
dow.

Cut: ChooseCut to cut the selected text from the message pane and copy it to
system clipboard.

Copy: ChooseCopy to copy the selected text from the message pane to the s
tem clipboard.

Paste:ChoosePaste to paste text from the system clipboard into the message
pane at the current cursor position.

Delete:ChooseDelete to delete the selected text from the message pane.

Setup Menu Once you have chosen a workspace and defined the program configuration,
can use the items in theSetup Menu to set up options.

Trace UAL: ChooseTrace UAL to set up options to control the predefined trac
UAL. This is the primary means for tracing program execution. This will open
theTrace Setup Dialog.
8-6 RootCause GUI Reference

Workspace Browser

g-

d
ll

 a

s.

is

t.
o-
used

ms in
e

Add UAL: ChooseAdd UAL to add a new UAL to the workspace. This allows
you to add your own “predefined” UALs to a workspace and control their confi
uration. This will open theAdd UAL Dialog.

Edit UAL: ChooseEdit UAL to edit parameters or other configuration associate
with the selected UAL. (This is insensitive unless a UAL is selected.) This wi
open the UAL-specific configuration dialog, such as theTrace Setup Dialog or
Java Exceptions Configuration Dialog; or else the default dialog which simply
allows UAL parameters to be specified when the UAL is used by aprobe and
apformat. Note that the “-p” argument that is used to indicate parameters for
UAL shouldnot be specified here.

Remove UAL: ChooseRemove UAL to remove a UAL from the list displayed
under theUALs node. This item is insensitive if no UAL is selected, or if the
selected UAL is predefined.

Build: ChooseBuild to compile the trace setup into a UAL in preparation for
running the program locally or deploying the trace to a remote computer.

Options: ChooseOptions to open theRootCause Options Dialog, from which
most workspace configuration items are selected.

Source Path:ChooseSource Path to set up the search path used to find source
files in the Trace Setup and Trace Display windows. Source files will be dis-
played when you define a trace, and also when you view logged trace event
This will open theEdit Source Path Dialog.

Class Path:Choose Class Path to set up the class path for Java program. Th
will define where the Java Virtual Machine (JVM) searches for class and JAR
files. The class path is used only for Java programs. This will open theEdit Class
Path Dialog.

JRE Path: ChooseJRE Pathto set up the path to the Java Runtime Environmen
This determines which Java Virtual Machine will be used to run your Java pr
gram when run from the Execute menu within RootCause. The JRE path is
only for Java programs. This will open theJava Path Dialog.

Execute Menu Once you have set up the traces you want for your program you can use ite
theExecute Menu to define other aprobe options, and run the program with th
traces.
RootCause GUI Reference 8-7

Workspace Browser

is
ro-
ript

the

lyze

-

Run Program: ChooseRun Program to run the program on thelocal computer
(the same computer running the RootCause GUI) with the defined traces. Th
option is useful when developing traces on the local computer. Registered p
grams can be run outside of RootCause from the command-line or from a sc
or batch file, but this may be more convenient. This will open theRun Program
Dialog.

Deploy Program :ChooseDeploy Programto deploy the current set of traces to
a remote computer where the RootCause Agent is installed. The traces and
options selected in the current workspace will be packaged up to be sent to
remote computer. This will open theDeploy Dialog.

Analyze Menu Once you have run your program with the traces you specified, you can ana
the logged data.

Index Process Data:ChooseIndex Process Datato build an index for the most
recently logged data in the workspace. This will open theTrace Index Dialog.

Examine Process Data:ChooseExamine Process Data to examine the most
recently logged data in the workspace. This will open theTrace Data Dialog.

Help Menu Use theHelp Menu to figure out what is going on and how to get things done.

Toolbar Use theToolbar to access common menu items quickly.

Setup:ChooseSetup to set up traces. This will open theTrace Setup Dialog.

Build: ChooseBuild to compile the trace setup in preparation for running the
program locally or deploying the traces to a remote computer.

Run: ChooseRun to run the program locally. This will open theRun Program
Dialog. Registered programs can be run outside of RootCause from the com
mand-line or from a script or batch file, but this may be more convenient.

Deploy: ChooseDeploy to deploy the traces to a remote computer. This will
open theDeploy Dialog.
8-8 RootCause GUI Reference

New Workspace Dialog

.

ava

e
e

 or

sion
ava
as

he

d
h
ava

using
to
ine
Decollect:ChooseDecollect to unpack data collected from a remote computer
This will open theDecollect Data Dialog.

Index: ChooseIndex to build an index for the most recently logged data in the
workspace. This will open theTrace Index Dialog.

Examine: ChooseExamine to examine the most recently logged data in the
workspace. This will open theTrace Data Dialog.

New Workspace
Dialog

TheNew Workspace Dialogpermits the user to create a newworkspace. A single
Java file is associated with each workspace. If you have a license for both J
and C++, two tabs will be visible; select the tab corresponding to the kind of
workspace needed. This user’s guide describes only the Java workspace.

Java Workspace The Java file name can be entered in the text field labeled Java File or can b
selected using the “...” button to the right of the text field. The Java file can b
either a Java.class or.jar file. If a .jar file is selected, the main class name
must be specified if it cannot be determined from the manifest.

The workspace name can be entered in the text field labeled Workspace File
can be selected using the “...” button to the right of the text field. If the user
selects a workspace name that is an existing file, the will prompt for permis
to overwrite the file. A default workspace name will be chosen based on the J
file or class name and the current working directory at the time RootCause w
started.

The main class name can be entered in the text field labeled Class Name. T
main class must exist in the.jar file. If the .jar file contains a manifest, the
main class will default to the one specified by the manifest.

The class path can be specified in the Class Path text field or it can be edite
using the “...” button to the right of the text field. This will open the Class Pat
Dialog to edit the path. The class path value will be used to find the specified J
class if no Java file name is specified.

The JRE path can be specified in the JRE Path text field or it can be edited
the “...” button to the right of the text field. This will open the Java Path Dialog
select the path. The JRE path value will be used to find the Java Virtual Mach
to run the Java program.
RootCause GUI Reference 8-9

Reset Program Dialog

-
mes

n to
va
add
ML

ith
ork-
, dis-

he
al-

ed.
e

nt

-

The Working Directory field indicates the current directory when the java com
mand was run. This is needed in order to correctly evaluate relative path na
in the Class Path.

The J2EE Server Directory can be entered or browsed to using the “...” butto
the right of the text field. Enter the directory where deployable Enterprise Ja
Bean (EJB) and Servlet classes and jars reside. RootCause will automatically
EJB and Servlet classes and jars that are specified in any J2EE compliant X
deployment descriptors. For more information see"RootCause J2EE Support" on
page 10-14.

Buttons

Once valid workspace parameters have been selected, click theOK button to cre-
ate the workspace. Use theCancelbutton to dismiss the dialog without creating a
new workspace. Use theHelp button to figure out what is going on and how to
get things done.

Reset Program Dialog TheReset Program Dialog permits the user to reset the program associated w
a workspace when the program is rebuilt or moved to a new location. The w
space will reconcile the changes to the program with the trace setup selected
card any invalid trace options, and define the program which will be traced. A
single program is associated with each workspace.

Program File: The program name can be entered in the text field labeledPro-
gram Fileor can be selected using the “...” button to the right of the text field. T
program must exist and must have execute permission. The field will be initi
ized with the current program.

Main Class: If the program is a Java JAR file, the main class must be specifi
The main class name can be entered in the text field labeled Main Class. Th
main class must exist in the JAR file. The field will be initialized with the curre
main class.

Buttons

Once a valid Java main class has been selected click theOK button to reset the
program. Use theCancel button to dismiss the dialog without resetting the pro
gram. Use theHelp button to figure out what is going on and how to get things
done.
8-10 RootCause GUI Reference

Add UAL Dialog

d

 Sys-

u-
cified

ee

ip-

 a

to

n

Add UAL Dialog TheAdd Ual Dialogconfigures a user-definedUAL and adds it to the workspace.
SelectAdd UAL from theSetup Menu menu to open this dialog. Once a UAL is
added to the workspace it can be enabled and disabled via the checkbox, an
other options can be specified by double-clicking on it to open theUAL Options
Dialog.

Note: This is an advanced feature, and users are encouraged to contact OC
tems for support.

Plug-In Class: If the UAL to be added requires a separate interface for config
ration and operation within RootCause, that Java class name should be spe
in the text field labeledPlug-in Class. Most UALs will not require a special inter-
face and this field can be left blank. TheJava Exceptions Configuration Dialogis
an example of such a plug-in class.

UAL File: Specify the file (path) containing the UAL in the text field labeled
UAL File. This identifies the actual UAL to be added to the workspace.

Name of UAL: Specify the name to use to display the UAL in the workspace tr
in the text field labeledName of UAL. Normally this will match the UAL file
name.

UAL Description: Specify a brief description of the UAL in the text field labeled
UAL Description. This will also be displayed in the workspace tree. This descr
tion may highlight any special configuration of the UAL.

Copy UAL: Check the box labeledCopy UAL to copy the UAL to the work-
space. This is the recommended method of ensuring the UAL is available on
remote computer if the workspace is deployed.

Requires Trace UAL: Check the box labeledRequires Trace UAL if the new
UAL requires that the Trace UAL be active when it is active.

Aprobe Parameters:Specify the string to follow the “-p” option after theUAL
File on the aprobe command-line. Do not include the “-p” itself. For example,
specify a configuration file in the workspace, you might enter:

-c $ RC_WORKSPACE_LOC/events.cfg

Apformat Parameters: Specify the string to follow the “-p” option after the
UAL File on the apformat command-line. Do not include the “-p” itself. You ca
RootCause GUI Reference 8-11

RootCause Options Dialog

es

l the

 com-

ld

re
eing

ore
ata,
refer to files in the workspace itself with theRC_WORKSPACE_LOC environ-
ment variables.

Buttons

Use theOK button to add the new UAL as specified. Use theCancel button to
abandon the operation. Use theHelp button to figure out what is going on and
how to get things done.

RootCause Options
Dialog

TheOptions item in theSetup Menu opens theRootCause Options Dialog, from
which most options for building, running, formatting and displaying your trac
are specified. It consists of a number of tabs, but theRootCause Options Tab,
shown initially, shows most of the items of interest.

Buttons

Use theOK button to accept all changes to the RootCause options. Use theCan-
cel button to discard any changes to the RootCause options. Use theHelp button
to figure out what is going on and how to get things done.

RootCause Options Tab The RootCause Options Tab is used to define a number of values that contro
collection and display of that trace data.

Data Collection Options

The following options control data collection at the time the program is run.
These are recorded per-workspace and translate into options on the aprobe
mand-line, set using theAprobe Options Tab.

Keep logged data for N previous processes:Set the maximum number of pre-
vious or concurrent processes for which data is kept by modifying the text fie
labeledKeep logged data for N previous processes. This controls for how many
previous processes logged data files are retained. Larger values will use mo
disk space. This value must be 1 or greater, resulting in two process’s data b
saved: the most recent run and one previous to that.

Data File Size:Set the maximum data file size by modifying theData File Size
text field. This controls how large each data file can become while logging bef
a new data file is created. Smaller values will lead to faster times to display d
8-12 RootCause GUI Reference

RootCause Options Dialog

t
es.

ta

in the

in

led

dis-
and allow more control over the amount of data to be viewed at one time, bu
limit the size of tables and other monolithic data items logged by some prob

Wraparound data logging wraps at N:Set the maximum size of wrap-around
data kept in data files by modifying the text field labeled Wraparound data log-
ging wraps at N. This controls how much data is kept in the wrap-around data
files. Larger values will use more disk space. This number, divided by the Da
File Size specified, yields the number of data files kept in the “APD ring” in the
absence of snapshots. This corresponds to the aprobe -n argument specified
Number of APD Files field in theAprobe Options Tab.

Total logged data limit per process:Set the maximum size of all logged data in
data files and snapshot files by modifying the text field labeledTotal logged data
limit per process. This controls the total amount of logged data that is retained
wrap-around data files plus older data files preserved as a result of asnapshot
action. Larger values will user more disk space.

Data Display Options

The following options control the display of data though theTrace Index Dialog
and theTrace Display. These options are saved as preferences on a per-user
basis.

Maximum number of items in Trace Index:Set the maximum number of
items allowed in theTrace Index Dialogby modifying the text field labeledMax-
imum number of items in Trace Index. Larger values will lead to longer times to
build an index.

Maximum number of events in Trace Display:Set the maximum number of
events allowed in the Trace Display event tree by modifying the text field labe
Maximum number of events in Trace Display. Larger values will lead to longer
times to display event trees.

Display N data files before selected:Set the number of data files displayed
before an event selected in theTrace Index Dialog by modifying the text field
labeledDisplay N data files before selected. This controls how many events are
displayed before the selected event. Larger values will lead to longer times to
play data.

Display N data files after selected:Set the number of data files displayed
before an event selected in theTrace Index Dialog by modifying the text field
RootCause GUI Reference 8-13

RootCause Options Dialog

dis-

s

e
e,
red

e
ave

on

you

shot
or-
labeledDisplay N data files after selected. This controls how many events are
displayed after the selected event. Larger values will lead to longer times to
play data.

Build Options Tab The Build Options Tab in theRootCause Options Dialog is used to set options
that control how Apc files are compiled and to include additional custom Apc
files.Note: these options do not apply to Java-only workspaces.

Aprobe Options Tab TheAprobe Options Tab is used to set options that control how Aprobe collect
data from the defined traces.

APD File: Choose the name of the APD file where Aprobe collects data in th
APD File text field. Any path and name ending in “.apd” can be specified her
and the APD files will be created with that name. Note that this path is igno
for remote (deployed) workspaces. This corresponds to the aprobe-d option.

Number of APD Files:Set the number of APD files that will be chained
together to hold trace information in theNumber of APD Files text field. Using
multiple files prevents any one file from becoming too large. As each APD fil
fills up it is closed and a new one is opened. If the maximum number of files h
been created, the oldest one is deleted. This is anAPD ring. You may select 1 or
more files. This corresponds to the aprobe-n option.

Size of APD Files:Set the maximum size in bytes of the APD files in theSize of
APD Filestext field. This value can be used to restrict the amount of informati
saved in each file. You can select any size from 1MB to 256MB. This corre-
sponds to the aprobe-s option.

Number of APD Rings:Specify the number of APD file ringsto be preservedin
theNumber of APD Rings text field. The number of APD rings determines how
manyProcess Data Sets are preserved for the programin addition to the most
recent. You need one set of rings for each simultaneous program execution
want to trace, with a minimum of 1. This corresponds to the aprobe-k option.

Number of Snapshot Files:Specify the number of snapshot data files in the
Number of Snapshot Files text field. This value determines how many snap
files are kept for hte program in addition to the wraparound APD files This c
responds to the aprobe-t option.
8-14 RootCause GUI Reference

RootCause Options Dialog

e
e

un

n

n

Additional Aprobe Options: Specify any additional options in theAdditional
Aprobe Options text field, just as you would on the Aprobe command line. Th
most commonly needed one “-qstack_size=1000000” to increase the Aprob
stack size.

Apformat Options Tab TheApformat Options Tab is used to set options that control how theapformat

command formats data collected from the defined traces and probes.

Additional Apformat Options: Specify any additional options in theAdditional
Apformat Options text field, just as you would on the Apformat command line.

Run Options Tab The Run Options Tab in theRootCause Options Dialog is used to set options
required to run the program on the local computer using theRun Program menu
item or theRun button. These options are ignored unless your application is r
directly from the RootCause GUI.

Working Directory: Set the path of the working directory where the program
should run in theWorking Directory text field. This also specifies the directory
from which the load modules are evaluated.

Command To Invoke Program:This is the main class name that will appear o
the Java command;do not change it. If you need to run the program with some-
thing other than the “java” command you cannot use the Run button or menu
item.

Program Parameters:Specify any program parameters in theProgram Parame-
ters text field, just as you would on the command line.

Java Parameters:Specify any parameters to the Java Virtual Machine (JVM) i
theJava Parameters text field as you would on the command line.

Source Options Tab TheSource Options Tab is used to set options that control how missing source
files are handled in the Trace Setup and Trace Display dialogs.

Don’t Prompt for Source Files:Check theDon’t Prompt for Source Files box
to specify that actions in theTrace Setup Dialog andTrace Display window are
to ignore missing source files. This setting is also available in the source file
RootCause GUI Reference 8-15

Edit Source Path Dialog

urce

ath

th

by
prompt dialog itself. You may find source files later using theFind Source File
menu item.

Edit Source Path
Dialog

TheEdit Source Path Dialog is opened by theSource Path item in theSetup
Menu, and allows the user to edit the path used to search for source files. So
files are displayed in theTrace Setup Dialog andTrace Display to provide con-
text information when selecting traces and viewing trace events.

The list displays, in order, the directories searched for source files if the full p
recorded in the object or class file is not found.

Buttons

Add: Use theAdd button to add a new path before the selected one. A file
chooser will open to select the path.

Move Up: Use theMove Up button to move the selected path ahead of the pa
above it.

Move Down: Use theMove Down button to move the selected path behind the
path below it

Remove:Use theRemove button to remove the currently selected path.

Use theOK button to accept the changes to the source path. Use theCancel but-
ton to discard any changes to the source path. Use theHelp button to figure out
what is going on and how to get things done.

Edit Class Path Dialog TheEdit Class Path Dialogis opened by theClass Pathitem in theSetup Menu,
and allows the user to edit the path searched for classes found in theTrace Dis-
play events, and also when running Java using theRun button.

The list displays, in order, the directories and/or JAR files that are searched
RootCause or theJVM itself.

Buttons

Add: Use theAdd button to add a new path before the selected one. A file
chooser will open to select the path.
8-16 RootCause GUI Reference

Java Path Dialog

th

, or

ow-

e,
Move Up: Use theMove Up button to move the selected path ahead of the pa
above it.

Move Down: Use theMove Down button to move the selected path behind the
path below it

Remove:Use theRemove button to remove the currently selected path.

Use theOK button to accept the changes to the class path. Use theCancelbutton
to discard any changes to the class path. Use theHelpbutton to figure out what is
going on and how to get things done.

Java Path Dialog TheJava Path Dialogis opened by theJRE Path item in theSetup Menu, and
edits the path to the Java Runtime Environment (JRE) used to execute Java pro-
grams.

Type the full path to the JRE root directory in the text field labeled JRE Path
use the “...” button to open a file chooser to select the path.

Buttons

Use theOK button to accept the changes to the JRE path. Use theCancel button
to discard any changes to the JRE path. Use theHelpbutton to figure out what is
going on and how to get things done.

UAL Options Dialog TheUAL Options Dialog is opened by theEdit UAL item in theSetup Menu or
Workspace Tree Workspace Tree Popup Menu, or by double-clicking on a name
in theUALs node node in the Workspace Tree.

This is the “default UAL plug-in” for UALs added usingAdd UAL. It lets you set
options forUALs associated with the workspace. It is overridden by more p
erful configuration dialogs for the trace andjava_exceptions UALs. Contact OC
Systems for more information on writing interfaces for UALs.

The UAL file and name are displayed in the text fields labeledUAL File andUAL
Name. These values cannot be changed.

If a UAL requires command-line parameters at Aprobe-time or Apformat-tim
you can change those values in the text fields labeledAprobe Parameters and
RootCause GUI Reference 8-17

Java Exceptions Configuration Dialog

sso-

hich

, a

a

rate

-

Apformat Parameters. The “-p” option used on the aprobe and apformat com-
mand-line to introduce UAL arguments should not be specified here.

Buttons

Use theOK button to set the Ual options as specified. Use theCancel button to
abandon the operation. Use theHelp button to figure out what is going on and
how to get things done.

Java Exceptions
Configuration Dialog

Thejava_exceptionspredefined UAL in theWorkspace Treeincludes a “configu-
ration plug-in” interface which allows the user to change the default actions a
ciated with Java exceptions when the Java Exceptions UAL is enabled. This
dialog is opened by double-clicking on thejava_exceptions label, or select-
ing Edit UAL from theWorkspace Tree Popup Menu or theSetup Menu.

There are two levels of exception reporting provided, “Logging” and “Snap-
shots”.

When an exception is Logged, an Exception event and traceback is logged w
appears in theTrace Index Dialog if Exception events are selected in theSelect
Events Dialog, and an Exception marker appears in theTrace Display.

When an exception Snapshot is taken, in addition to the simple event logged
snapshot event is created, which also appears in theTrace Index Dialog.

By default, all user-defined exceptions are Logged. In addition, common Jav
Runtime and RMI exceptions have Snapshots taken by default.

TheJava Exceptions Configuration Dialogallows changing these defaults. There
are two main panes in the dialog, one for Logging and one for Snapshots.

Logging Exceptions:Within theLogging Exceptions pane, exceptions can be
excluded from logging by adding the full Java exception class name on a sepa
line of the multi-line text field.

Exception Snapshots:Within theException Snapshotspane, there are three sub
panes:

Default: The first, labeledDefault, allows turning on or off of snapshots for
Runtime and RMI exceptions. The default is “on” (checked) for both types.
8-18 RootCause GUI Reference

Run Program Dialog

t is
arate

n

he

ned
ore

nve-

as
 The
e

can
Include: The second sub-pane under Exception Snapshots is labeledInclude,
which allows the addition of individual exception classes for which a snapsho
to be taken. Specify the full name of each exception to be included on a sep
line.

Exclude: Finally, theExclude sub-pane identifies individual exception classes
for which a snapshot isnot to be taken. Specify the full name of each exceptio
to be excluded on a separate line.

Buttons

Use theOK button to update the configuration to be applied to the next run of t
program. Use theCancel button to abandon any changes to the workspace
options.

Note: No configuration dialog is available forexceptions due to the much more
limited use of exceptions in C++. However this plug-in mechanism is desig
to allow site-specific configuration and extension. Contact OC Systems for m
information about such customizations.

Run Program Dialog TheRun Program Dialog is shown by theRun button (theRun Program opera-
tion) to run a traced program on the local computer. This is provided as a co
nience for running simple programs. Programs that require special start-up
scripts or batch files can be run from the command line in a normal fashion (
long as they have been registered with a RootCause workspace for tracing).
working directory, program path, and program parameters (as specified in th
Program Options Dialog) are displayed.

Choose theAutoload Output checkbox to automatically open aTrace Data Dia-
log upon program termination to format and display the trace data.

Buttons

Use theOK button to run the program as specified. Use theCancel button to
abandon running the program. Use theHelpbutton to figure out what is going on
and how to get things done.

Deploy Dialog TheDeploy Dialog is opened by theDeploy button (theDeploy Program opera-
tion) to deploy the traces for a program to a remote computer so the program
RootCause GUI Reference 8-19

Deploy Dialog

 to

ld
st

r is
 a

y

le is
ithin

-

r-
re

e

be traced there. The dialog allows the user to select some final options, and
review other options.

Output file: Type the path name of the output file to be created in the text fie
labeledOutput fileor select a path using the “...” button. This is the file that mu
be transmitted to the remote computer for installation.

License file:Type the path name of the license file to be used in the text field
labeledLicense file or select a path using the “...” button. This is normally
$APROBE/licenses/agent_license.dat .

If the License file does not have the proper name or cannot be found an erro
given and the user must provide a satisfactory file. If the file does not contain
valid license, an error is given but the user may continue and create a deplo
package, but then a license must be provided at the remote site.

Aprobe Options: Use theAprobe Optionstab to inspect the Aprobe options that
will be used. If they are not correct, go back to theRootCause Options Dialogto
change them.

Program Options: Use theProgram Optionstab to verify the default path to the
program with which the workspace is associated. The name of the program fi
not referenced in the remote environment, but the name of the main class w
it must be the same

UALs: Use the UALs tab to inspect which UALs will be activated when the pro
gram is traced. If they are not correct, go back to theUALs node node in the
Workspace Tree of the main window to change them.

ADI Files: Use theADI Files tab to select for which modules you want to gene
ate Aprobe debug information (ADI) files. Only compiled modules are listed he
-- none are needed for Java.

Buttons

Use theOK button to create the deploy file from the given parameters. Use th
Cancelbutton to abandon the deploy operation. Use theHelpbutton to figure out
what is going on and how to get things done.
8-20 RootCause GUI Reference

Decollect Data Dialog

tion

the
smit-

e

t

lick-
ill
on

ck
Decollect Data Dialog TheDecollect Data Dialogis opened by theDecollectbutton (theDecollect Col-
lectedoperation) to unpack data collected on a remote computer for examina
on the local computer.

When the operation completes, anOpen Decollection is automatically done on
the newly created directory to allow the data to be formatted and viewed.

Collect File: Type the path name of the collect file to unpack in theCollect File
text field or use the “...” button to open a file chooser to select the file. This is
file that was created by a collect operation on the remote computer and tran
ted to the local computer.

Destination To Create:Type the path name of the destination directory to be
created in theDestination To Create text field or select a path using the “...” but-
ton. This is the directory that becomes thedecollection that will contain the
unpacked data on the local computer.

Buttons

Use theOK button to unpack the collect file to the chosen destination. Use th
Cancel button to abandon the decollect operation. Use theHelp button to figure
out what is going on and how to get things done.

Trace Setup Dialog TheTrace Setup Dialog is used to set up traces and probes for the program. I
consists of three parts: theProgram Contents Tree on the left, theSource Pane
on the upper right, and theVariables PaneandProbes Paneas tabs on the lower
right. The following sections describe each of these in more detail.

Program Contents Tree TheProgram Contents Tree displays the currently selected traces for the pro-
gram. At the root is the program node. Under this node are the libraries (mod-
ules) against which the program has been linked. Additionaldynamic modules
that have been explicitly added to the workspace usingAdd Dynamic Module in
the mainWorkspace Menu will also appear.

Nodes with child nodes beneath them are have a “lever” next to that node. C
ing on a “lever” next to a node in the tree, or double-clicking on node’s label, w
expand it, showing the immediate children of that node. Doing these actions
an already-expanded node will collapse it, hiding its child nodes. Double-cli
also expands or collapses a node.
RootCause GUI Reference 8-21

Trace Setup Dialog

r in

ane,
-
thod

e

Java Program Contents

Java program contents are organized as follows:

P Main Class - the program node based on main class name

M Root Java Module ($java$) - root of all Java methods

J Class Path Element - JAR or directory in classpath

Package Element - e.g.,com or sun , if applicable

C Class - a class in the parent JAR/directory/package

m Method in Class

Class Path elements are listed in alphabetical order, not the order the appea
the classpath. Use theEdit Class Path Dialog to view or change the run-time
order. The Class Path element isnotsignificant in aTrace All Inoperation, only
the package and class names. So selecting the “com” node underpet-

store.jar and clickingTrace All In com will really trace all classes in all
packages that start with com in thewhole application, not just those inpet-

store.jar .

Static constructor methods have names<clinit>() and user-defined construc-
tors are<init>(args) .

Black dots next to the methods indicate that the method will be traced.Blue dots
next to the methods indicate thatactions such as logging are defined.

Selecting a method node will cause the source to be displayed in the source p
if possible. In theVariables Pane, a single checkbox for logging all the parame
ters will be displayed. The probe triggers and actions associated with the me
will be displayed in theProbes Pane.

Trace Setup Popup
Menu

Operations on nodes in theProgram Contents Tree are done via a popup menu.
Select a node in the tree and use the right mouse button (MB3) to display th
popup menu.

Trace This Item: UseTrace This Item to add a trace for the selected method
node.

Don't Trace This Item: UseDon't Trace This Itemto remove a trace (black dot)
for the selected method node.
8-22 RootCause GUI Reference

Trace Setup Dialog

, as

t
nt to
es

ote
ded
Enable Load Shedding for This Item:UseEnable Load Shedding for This Item
to re-enableload shedding (the default action) for the selected method node.
This action is available only when load shedding has been previously disabled
indicated by a red dot.

Disable Load Shedding for This Item:UseDisable Load Shedding for This
Itemto disableload sheddingfor the selected method node. This is generally no
necessary unless the function has a very high execution rate, yet you still wa
trace it, at the risk of slowing the overall trace. Disabling load shedding caus
the item to be marked with a red dot.

Trace All In: UseTrace All In to add a trace for all the child nodes of the
selected module, file, directory or class node.

Note: Any enclosing JAR or directory isnot significant in aTrace All In opera-
tion, only the package and class names. So selecting the “com” node underpet-

store.jar and clickingTrace All In com will really trace all classes in all
packages that start with com in thewhole application, not just those inpet-

store.jar .

Don't Trace All In: UseDon't Trace All In to remove traces (black dots) for all
the child nodes of the selected module or class node.

Remove Probes For All Child Items:UseRemove Probes For All Child Items
to remove any probes applied to the selected node and all its child nodes. N
that probes here are those actions indicated by the blue dots, which were ad
from theVariables Pane or Probes Pane.

Trace All Lines in Function: UseTrace All Lines In Functionto add a trace for
all the lines in the selected method node.

Don’t Trace All Lines in Function: UseDon’t Trace All Lines In Function to
remove traces for all the lines of the selected method.

Edit Wildcards: UseEdit Wildcards to examine and change the TRACE and
REMOVE directives for the module containing the selected item, using theEdit
Wildcard Strings Dialog.

Find Function/Method: UseFind Function/Methodto find a function or method
in the program contents tree. This will open theFind In Program Contents Dia-
log. This is the same as theFind button at the bottom of the window.
RootCause GUI Reference 8-23

Trace Setup Dialog

the
e
hod.
o be

log-

t a
Find Source File:UseFind Source File to locate the source file for the selected
class or method.

Source Pane TheSource Pane displays the source file for the currently selected method in
Program Contents Tree. The source for the current method is annotated with lin
numbers and checkboxes which indicate which lines can be traced in the met
Checking a source line will cause the applicable probe triggers and actions t
displayed in theProbes Pane.

Variables Pane TheVariables Pane displays the parameters that can be logged:

• on entry to a method; or

• on exit from a method.

When a method is selected in theProgram Contents Tree, theVariablespane will
show that parameters can be logged on entry to a method, which also implies
ging the return value on exit.

Probes Pane TheProbes Pane displays the probes that can triggeractions:

• on entry to a method; or

• on exit from a method.

When a method is selected in theProgram Contents Tree, theProbes pane will
show probes activated on entry to or exit from the method.

When the program node in theProgram Contents Tree (denoted by the letterP)
is selected, theProbes Pane displays probes that can trigger actions:

• on program entry;

• on program exit;

• on thread entry; or

• on thread exit.

To define a probe, first check the “On” box on the left to activate it. Then selec
trigger from theProbe Trigger options menu.
8-24 RootCause GUI Reference

Trace Setup Dialog

s a
dis-

:

to
he

ter
n is

t

ta-
r

ng

of a
e

Next select an action from the Probe Action options menu. If the action require
parameter, specify it in the Probe Parameter text field or combo box. You can
able a probe by unchecking the On check box associated with the probe.

Probe Actions

The following actions may be selected from the Probe Actions options menu

Log Comment: Log a string literal at the given Trigger point. The Parameter
this action is the string to be printed. It will appear as a COMMENT event in t
Event Trace Tree.

Log Traceback: Log a stack traceback at the given Trigger point. The Parame
is the maximum depth to trace back. The overhead of the traceback operatio
proportional to this depth. It will appear as a TRACEBACK node in the Even
Trace Tree.

Log Statistic: Log time or other information specified by the Parameter. The s
tistics appear as aProcess Statisticsnode in the Event Trace Tree. The Paramete
values are:

• gethrtime(3C) (wall time) - calls the gethrtime() system
function and displays the value returned, the elapsed time since the
start of the program.

• gethrvtime(3C) (CPU time) - calls the gethrvtime() system
function and displays the value returned, the CPU time consumed by
the process.

• rusage(3C) (resource usage) - calls the rusage() system func-
tion, and displays the fields of the structure it returns.

Enable Tracing: Enable tracing that was disabled by an earlier Disable Traci
action. Has no effect if tracing was already enabled.

Disable Tracing: Disable tracing at the trigger point, to reduce the amount of
data logged. It is useful to use Disable Tracing at the On Entry trigger point
method, and Enable Tracing at the On Exit point, or vice versa, to control th
data logged.

Log Snapshot:Cause a datasnapshot to occur at the probe point, which also
logs a SNAPSHOT event. These events are shown in theTrace Index Dialog,
making them very easy to locate even if a lot of data has been logged. The
RootCause GUI Reference 8-25

Find In Program Contents Dialog

s.

n

a
um-

rt of
cted,
“Probe Parameter” field is a text field which defaults to
ROOTCAUSE_SNAPSHOT, but which may be replaced with any reasonably
short text string to more uniquely identify the snapshot point.

Buttons

Find: Use theFind button to search the program contents tree for methods of
interest. This will open theFind In Program Contents Dialog.

Options: Use theOptionsbutton to select advanced options that affect all trace
This opens theGlobal Trace Options Dialog.

Custom: Use the Custom button to get a template of the probe deployment
descriptor corresponding to your custom Java file. This opens theGenerate Cus-
tom XMJ Dialog. There is no further automated support for including custom
Java. SeeChapter 11, "Custom Java Probes".

OK: Use theOK button to build a UAL from the selected trace setup, and the
dismiss theTrace Setup Dialog.

Apply: Use theApply button to build a UAL from the selected trace setup. The
Trace Setup Dialog will stay visible.

Dismiss:Use theDismiss button to close theTrace Setup Dialog without build-
ing a UAL from the trace setup.

Help: Use theHelp button to figure out what is going on and how to get things
done.

Find In Program
Contents Dialog

TheFind In Program Contents Dialogis used to search for methods containing
specific pattern, or to find a method based on its source file name and line n
ber.

Find String: When theFind String tab is selected, you provide a string that
matches all or part of a method in theProgram Contents Tree. You must select a
module, class, or method node in the program contents tree to indicate the sta
the search. The next method that contains the given search string will be sele
or a dialog will indicate that no matches were found.
8-26 RootCause GUI Reference

Global Trace Options Dialog

l
and

n

nd
o-
-
od,

ng
ne

e ref-

ault,
t

Consider Case:If Consider Caseis selected, the search for the given string wil
exactly match the case of letters in the given search string. By default lower
upper case of the same letter are considered equal.

Search All Modules:If Search All Modulesis selected, then all modules will be
searched without asking for confirmation after each one is searched. You ca
select alternate starting nodes while the search dialog is visible to direct the
search.

Goto File: TheGoto File tab is used to search based on a source file name, a
optionally a line number, starting from the first method in the module. You pr
vide the full or simple name of a file to search for. The name provided is com
pared to the end of the full pathname of the source file containing each meth
so you must always provide the file extension in your search string.

Line Number: If no Line Number is specified, the first method associated with
the given file is identified. If a Line Number is specified, the method containi
that line in that file is found, if any, or else the method in the file whose start li
is closest to the given line.

Buttons

Use theNext button to find the next occurrence of the string in a function or
method node. Use thePrevious button to find the previous occurrence of the
string in a function or method node. Use theGotobutton to find the specified line
number in a file. Use theCancel button to dismiss the search dialog. Use the
Help button to figure out what is going on and how to get things done.

Global Trace Options
Dialog

TheGlobal Trace Options Dialog is used to set advanced options to control the
trace and logging of data. It is opened by clicking theOptionsbutton in theTrace
Setup Dialog

Dereference Pointers:TheDereference Pointersoption determines whether data
whose type is a pointer type has the value of the pointer (the address), or th
erenced data logged. Check the option to log the referenced data.

Log Java Class Loads:TheLog Java Class Loads option determines whether
each load of a Java class in the application is logged. This is enabled by def
and adds little overhead, but you may want to disable it if these events aren’
helpful.
RootCause GUI Reference 8-27

Edit Wildcard Strings Dialog

wer-
that

 indi-
trac-
 is

he

 so

k

at
Maximum Logged String Length: TheMaximum Logged String Length text
field determines how many bytes of dereferenced string types are logged. Lo
ing this value can reduce the amount of data logged and reduce the impact
tracing has on the program's performance.

Enable Load Shedding:This checkbox indicates whetherload sheddingwill be
enabled on the next trace. The scale and text field underneath this checkbox
cates the relative amount of tracing overhead that should be tolerated before
ing is disabled on a method This is recorded on a per-workspace basis, and
enabled by default to allow moderate overhead.

Individual methods may be excluded from load shedding using theLOAD_SHED
Table associated with a LOAD_SHED node at the end of theTrace Display.

Buttons

Use theOK button to accept the option values as displayed. Use theCancel but-
ton to discard any changes and leave the values as they were. Use theHelpbutton
to figure out what is going on and how to get things done.

Edit Wildcard Strings
Dialog

TheEdit Wildcards item on theTrace Setup Popup Menu in theProgram Con-
tents Tree brings up theEdit Wildcard Strings Dialog.

The contents of this dialog reflect the Traces selected from within the Trace
Setup popup menu for the currently selected module. The module to which t
dialog contents apply is shown in the dialog title.

Trace Wildcards: TheTrace Wildcards list on the left specifies those methods
that will be traced.

Don't Trace Wildcards: TheDon't Trace Wildcardslist on the right shows those
methods that will be explicitly removed from the list of methods to be traced,
the final set of traces is the difference between the two lists.

Add: To add a wildcard to a list, enter it in the text field below that list, then clic
theAdd button.

Update: To replace an existing item with the contents of the text field, select th
item and click theUpdate button.
8-28 RootCause GUI Reference

Generate Custom XMJ Dialog

and/
ld-

how

the

it.
-

Remove:To remove an item from the list, select that item and click theRemove
button.

More Buttons

Click theOK button to save the lists as shown. Click theCancelbutton to discard
any changes. Click theHelp button to view this text.

The names in the list are “probe names” of the form

"class::method(String)"

There is only one wildcard character, '*', and '*' may appear only as the first
or last character in the wildcard string. The following are examples of valid wi
cards:

"*" all methods in the module

M* all methods whose name starts with M

ErrorClass::*
all methods in class ErrorClass

Generate Custom
XMJ Dialog

The Generate Custom XMJ Dialog is opened when theCustom button at the bot-
tom of the Trace Setup dialog is clicked. It presents a text dialog describing
to construct a custom probe, including the exact XMJ text applicable to the
selected mehod. SeeChapter 11, "Custom Java Probes" for more information.

New Class Dialog TheNew Class Dialog is opened when an attempt to find a class in the Trace
Setup dialog fails. Use this dialog to enter the path for class file to be added to
Trace Setup. You can browse for.class and.jar files that match the class
name. If the class name field is already filled in, you will not be able to modify
If a matching class file was found in the classpath, it will be automatically dis
played but you may browse to a different one if necessary.

Buttons

Use theOK button to select the class file. Use theCancel button to close the dia-
log without selecting a class file. Use theHelp button to figure out what is going
on and how to get things done.
RootCause GUI Reference 8-29

Trace Data Dialog

n
from

file
pro-

pen
n

dis-

e
y.

s

he
ltiple
Trace Data Dialog TheTrace Data Dialog permits the user to select the exact data files to befor-
mated for display in theTrace Display. The user can make this choice based o
the data present in each data file, to reduce the total size of the display. Data
additionalworkspaces can be made available for selection.

Data files available for selection are displayed in the tree labeledTrace Data
Files. Check the checkbox to the left of a node in the tree to select that data
for formatting and display. Nodes in the tree represent data files collected for
cesses running traced applications, theRootCause Log file, or adecollectedlog
file.

Buttons

Add Process:Use theAdd Process... button to add the data files collected from
another process running a traced application to the data files tree. This will o
theAdd Process Data Dialog to select data files. Once added, the data files ca
be selected for format and display.

OK: Once the data files have been chosen, click the OK button to format and
play the data in a newTrace Display.

Apply: Click theApplybutton to format and display the data in the original Trac
Display. This is only available when the dialog is opened from a Trace Displa

Cancel:Use the Cancel button to dismiss the dialog.

Help: Use the Help button to figure out what is going on and how to get thing
done.

Add Process Data
Dialog

TheAdd Process Data Dialog permits the user to selectProcess Data Set from
either theTrace Data Dialogor Select Data Files Dialog. A Process Data Set is a
directory containing all data files collected in a single run of an application. T
user can navigate through the file system to select the relevant data sets. Mu
Data Sets may be available from a single directory because the file chooser
searches the subdirectories of the selected directory recursively.

Look In: The directory to search can be entered in the text field labeledLook In
or can be selected using the “...” button to the right of the text field.
8-30 RootCause GUI Reference

Trace Index Dialog

xt

a

the

ded,
t

a

s,
Process Data Sets:The available data sets will be displayed in the list labeled
Process Data Sets. Select a data set by clicking on it.

Process Data Set:The name of the selected data set will be displayed in the te
field labeledProcess Data Set.

Buttons

Once a Process Data Set has been chosen, click theOK button to add the data to
the parent dialog. Use theCancelbutton to dismiss the chooser. Use theHelpbut-
ton to figure out what is going on and how to get things done.

Trace Index Dialog TheTrace Index Dialog permits the user to generate an index for selected dat
files.

The index contains special markerevents selected by the user. The index can
allow the user to quickly find notable events in large traces and to examine all
events surrounding the marker in theTrace Display.

There is always one event in the index, corresponding to the Last Data Recor
and which always appears first since the initial order of events is most-recen
first.

Double-click on an event to immediately open a newTrace Display containing
just that event and its context.

Click on an event in the table to select it for display. Use Shift-click to select
contiguous block of events. Use Ctrl-click to select multiple, non-contiguous
events.

What is Indexed The Trace Index Dialog is opened as a result of a number of different action
which generate an index of different data:

1. Indexing Current Workspace Data

When you:

• chooseIndex Process Data in theAnalyze Menu; or

• click theIndex button in the Workspace buttonbar;

you have chosen to display an index for thecurrent data in the work-
RootCause GUI Reference 8-31

Trace Index Dialog

ain
space. This willreplace any index you have constructed already unless
the data is unchanged from the last time these operations were per-
formed.

2. Indexing Decollected Data

When you chooseOpen Decollection or Recent Decollections in the
Workspace Menu, an index is built using the most recent data in the de-
collection.

3. Re-Indexing Displayed Data

When you chooseAdd From Index To Displayin the Trace DisplayFile
Menu, the index associated with the data currently being displayed is
shown. This means that you can save and modify previously constructed
indexes by leaving a corresponding Trace Display window open.

4. Indexing Selected Process Data

When you:

• chooseAdd Selected Process Data in the Trace DisplayFile Menu
or theTrace Display Popup Menu(when an APP_TRACED event is
selected); or

• double-click on aData node in the Workspace Tree;

the data associated with the selected process is indexed.

In all cases, you can use theSelect Data Filesbutton to change theData Files that
are indexed.

Index Columns Click on a column header in the table to sort the table by that column. Click ag
to reverse the order of the sort.

The following columns are shown in theTrace Index Dialog:

Time: thetimestamp of the event. The newest event is shown first initially.

Application: the name of the file associated with theapplication. This is the
same as the Program name associated with theworkspacethat caused the data to
be recorded.

Process:the process id (PID) of the process in which the event occurred.
8-32 RootCause GUI Reference

Trace Index Dialog

ad

the

-
a

g.

is-
ent

e
y.
Thread: the Thread ID of the thread in which the event occurred. These thre
IDs are internal to Aprobe, and may not correspond to those shown by other
debugging tools.

Kind: the kind ofevent, SNAP or EXCP, corresponding to theSnapshots and
Exceptions checkboxes in theSelect Events Dialog. For eachProcess Data Set
there is also one FILE kind event with the label Last Data Recorded, which is
newest event from that process.

Event: the label associated with theevent. This corresponds to the Probe Param
eter associated with aLog Snapshotprobe, or maybe be a special value used by
predefined probe, such as (Java) EXCEPTION, C++ EXCEPTION, or Ada
EXCEPTION.

Details: the first text line of details associated with the event.

Buttons

Refresh Index:Use theRefresh Index button to regenerate the index using the
current selections.

Select Data Files:Use theSelect Data Files... button to choose which data files
are scanned to generate the index. This will open the Select Data Files Dialo

Select Events:Use theSelect Events...button to choose kind of events to include
in the index. This will open the Select Events Dialog.

Find In Index: Use theFind In Index... button to find an event or events in the
index that match(es) a string. This will open the Find Events Dialog.

OK: Once the events have been chosen, click the OK button to format and d
play the data in a new Trace Display. Alternatively, you can double-click an ev
to display it.

Apply: Click theApplybutton to format and display the data in the original Trac
Display. This is only available when the dialog is opened from a Trace Displa

Cancel:Use theCancel button to dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.
RootCause GUI Reference 8-33

Select Data Files Dialog

e

 to
ree
Root-

e.

e

in

lu-
Select Data Files
Dialog

TheSelect Data Files Dialog permits the user to select the exact data files to b
scanned when generating the index in theTrace Index Dialog.

Data files available for selection are displayed in a tree. Check the checkbox
the left of a node in the tree to select that data file for indexing. Nodes in the t
represent data files collected for processes running traced applications, the
Cause log file, or a decollected log file.

Buttons

Add Process Data:Use theAdd Process Data button to add the data files col-
lected from another process running a traced application to the data files tre
This will open theAdd Process Data Dialogto select data files. Once added, the
data files can be selected for indexing.

Update: Once the data files have been chosen, click theUpdate button to gener-
ate the index and close the dialog.

Change:Click theChange button to accept the changes to the data files, clos
the dialog, but not generate the new index.

Cancel:Use theCancel button to dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

Select Events Dialog TheSelect Events Dialogpermits the user to select the kind of events included
theTrace Index Dialog index.

Check the checkbox to the left of an event kind to select those events for inc
sion in the index:

Snapshots:include SNAP events in the index, recorded by thejava_exceptions
UAL or by a user-insertedLog Snapshot probe.

 Exceptions:include EXCP events in the index, recorded by thejava_exceptions
andexceptions UALs.
8-34 RootCause GUI Reference

Find Text In Events Dialog

se

ex

s

r

o

Buttons

Update: Once the event kinds have been chosen, click theUpdate button to gen-
erate the index and close the dialog.

Change:Click theChangebutton to accept the changes to the event kinds, clo
the dialog, but don’t generate the new index.

Cancel:Use theCancel button to dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

Find Text In Events
Dialog

TheFind Text In Events Dialog permits the user to search for events in the ind
which match a text string. It is launched by theFind In Indexbutton of theTrace
Index Dialog.

Search For:Enter the text string to match inSearch For text field.

Consider Case:Check theConsider Case checkbox to make the search case-
sensitive.

Buttons

Find: Once the search string is set, click theFind button to find the first event
that matches the string. The string starts from the event following the first
selected event, or from the first event in the index if no events are selected.

Find All: Click theFind All button to find every event in the index that matche
the string.

Cancel:Use theCancel button to stop the search and dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

Trace Display TheTrace Display window is used to examine detailed trace output logged fo
traced programs. The Trace Display is opened from theTrace Data Dialog and
from theTrace Index Dialogto show data collected for specific processes. It als
displays the start of each process in theRootCause Log.
RootCause GUI Reference 8-35

Trace Display

g
t
to.

item
oot-

-
ur-
ing

race

.

nly
ata
The Trace Display is composed of the following parts:

• the menu bar and theStepping Toolbar across the top;

• theEvent Trace Tree on the left side;

• theSource Pane on the upper right;

• theEvent Details Pane, theCall Stack Pane, theProgram Information Pane,
and theData Files Pane on the lower right.

These are described below.

File Menu The Trace Display initially displays the contents of a single APD or log file.

Refresh:ChooseRefresh to reformat and reload the data files or RootCause lo
from which the current Trace Display was built. This is useful to add the mos
recent events in the RootCause Log or from a data set that is still being written

Open Associated Workspace:UseOpen Associated Workspace to open the
workspace associated with a program in the RootCause log file. This menu
is only enabled if an APP_START or APP_TRACED event is selected in a R
Cause log file.

Add Data Files To Display:UseAdd Data Files To Display to open aTrace
Data Dialog from which a different group of data files may be selected for dis
play. This is most useful for viewing additional events before or after those c
rently selected. You can determine which files are currently selected by look
in theData Files Paneat the lower right. From that dialog, you can clickApplyto
replace the current Trace Data events with the new ones, or OK to create a T
Display window.

Add From Index To Display: UseAdd From Index To Display to open aTrace
Index Dialog from which different indexed events may be selected for display
From that dialog, you can clickApply to replace the current Trace Data events
with the new ones, or OK to create a Trace Display window.

Add Selected Process Data:UseAdd Selected Process Data to build an index
for the data file(s) associated with the selected process. This menu item is o
enabled if an APP_TRACED event is selected in a RootCause log file and d
exists for the process.
8-36 RootCause GUI Reference

Trace Display

.
is-

e

elect

e

is
ER,

data

-
e

n
, the
Save As XML: UseSave As XML to save the current event tree as an XML file
The XML file can be processed outside of RootCause, or reloaded for later d
play.

Save As Text:UseSave As Text to save the current event tree as a text file. Th
text file can be processed outside of RootCause.

Close:When you are finished viewing the trace display useClose to close the
Trace Display window.

Edit Menu The Edit menu provides operations on nodes in theEvent Trace Tree, and are
also available in aTrace Display Popup Menu there.

Deselect Function In Trace Setup:While developing a trace on a local com-
puter you may want to remove unnecessary method traces from your trace. S
a method call in the trace event tree, then use theDeselect Function In Trace
Setup to remove the selected function from the trace setup.
NOTE: When used on a LINE event, this will deselect the tracing of the entir
function, not just that line.

Find Function In Trace Setup:On the other hand, you may decide that there
additional data that must be collected with a particular event. Select an ENT
EXIT, LINE, or CALL_FROM method in the trace event tree, then use theFind
Function In Trace Setup menu item to open theTrace Setup Dialog with the
selected method highlighted. You can then add or remove probes of logged
items. If the class containing the method cannot be found, theNew Class Dialog
is presented to allow the user to locate the file in which the class is defined.

Find Class In Trace Setup:To move to the node in the Trace Setup tree corre
sponding to the Java class containing the method in a CALL node, select th
method in the trace event tree, then use theFind Class In Trace Setupmenu item
to open the Trace Setup Dialog with the selected method highlighted. You ca
then add or remove probes of logged data items. If the class cannot be found
New Class Dialog is presented to allow the user to locate the file in which the
class is defined.

Find Source:Use theFind Source menu item to locate the source file corre-
sponding to an ENTER, EXIT, or LINE event.
RootCause GUI Reference 8-37

Trace Display

tly
 tree,

s

tails
event

y
in

.
e

p-

m

Find Function In Trace Events:You can use theFind Function In Trace Events
menu item to start a search for the next or previous occurrence of the curren
selected event in the Trace Display. Select the event node in the trace event
then use the menu item to open theFind Text in Trace Events Dialog. The search
is started at the selected event.

Show Associated Table:Some event nodes, like CALL_COUNTS, have table
of information associated with them. Select the event node and use theShow
Associated Table menu item to display the data in aTable Dialog.

Find Text in Trace Events:You can use theFind Text in Trace Events menu
item to search the trace event tree for events containing a given string. The de
of the trace events are searched as well. The search is started at the selected
or at the first event if one is not selected.

View Menu The trace events are initially grouped by threads, with each showing a well-
formed call tree. Use theView Menu to change this.

By Threads: Use theBy Threads menu item to separate the displayed events b
individual threads. This will permit you to examine the flow within each thread
isolation from the others.

By Time: Use theBy Time menu item to display the trace events in time order
Events from different threads and processes will be interleaved to indicate th
order in which they occurred. This can help you understand the interactions
between the different threads.

Step Menu Use theStep Menu to step through the individual events in the event trace. Ste
ping allows you to review program execution forwards and backwards.

Step Next Forward:Use theStep Next Forward menu item to step to the next
event in the forward direction.

Step Next Backward:Use theStep Next Backwardmenu item to step to the pre-
vious event.

Step Into Forward: Use theStep Into Forward menu item to step into the next
method call in a forward (increasing time) direction. Using this menu item fro
the beginning of a trace will visit every trace event in the order it occurred.
8-38 RootCause GUI Reference

Trace Display

R

of

evi-

to

.

he
 the
Step Over Forward: Use theStep Over Forwardmenu item to step over the cur-
rent method call in a forward direction. This can be used to skip from an ENTE
node to the corresponding EXIT node, if it exists in the current trace.

Step Out Forward: Use theStep Out Forward menu item to step out of the cur-
rent call to the next event in a forward direction. This can be used to get out
calls that are no longer of interest.

Step Into Backwards:Use theStep Into Backwards menu item to step into the
most deeply nested previous call. This is effectively the most immediately pr
ous event.

Step Over Backwards:Use theStep Over Backwards menu item to move back-
wards over a call that is not of interest. This is useful to go from an EXIT node
the corresponding ENTRY node, if it exists in the current trace.

Step Out Backwards:Use theStep Out Backwards menu item to move back-
wards out of the current call to the previously traced caller.

Help Menu Use theHelp menu to figure out what is going on and how to get things done

Stepping Toolbar TheStepping Toolbarcontains a number of buttons that help you step through t
trace events in sequential forward and reverse orders. These correspond to
items in theStep Menu.

The two large up and down arrows correspond to:

• Step Next Forward

• Step Next Backward.

The next bank of six buttons are:

• Step Into Forward

• Step Over Forward

• Step Out Forward

• Step Into Backwards

• Step Over Backwards

• Step Out Backwards
RootCause GUI Reference 8-39

Trace Display

he

as

igate
 with

red

el;
f the
Find TheFind button provides quick access to theFind Text in Trace Events opera-
tion, also available from theEdit Menu and theTrace Display Popup Menu.

Event Trace Tree TheEvent Trace Treedisplays the trace events logged by the traced program. T
tree can be displayed in two different ways,By Threads andBy Time. The initial
view presented isBy Threads.

In the by-thread display, the tree will display one branch for each thread that w
traced. Entry and exit to called methods and other events can be viewed by
expanding the branches of the tree. You can use the stepping buttons to nav
through the trace events, or you can directly manipulate the trace event tree
the mouse.

In a by-time display, the tree will display slices of execution from the traced
threads. Each thread slice can be expanded to display the events that occur
with that slice.

Most nodes in the tree consist of an icon, usually just a letter; followed by a lab
followed by a description. Selecting most nodes also updates the contents o
Source Pane and theEvent Details Pane with additional information.

The following kinds of events are displayed:

APP_START a program was started but not traced.

APP_TRACED a program was started and traced.

START_DISPLAYED_DATA
The start of the displayed data.

END_DISPLAYED_DATA
The end of the displayed data.

THREAD_START the start of thread in a program.

THREAD_END the end of a thread in a program.

PROCESS/THREAD a thread slice.

ENTER entry into a function or method.

EXIT exit from a function or method.

ENTER (cont.) the continuation of a method call trace.

CALL_FROM the caller of the function in the immediately
following ENTER node.
8-40 RootCause GUI Reference

Trace Display

the

re

pup
LINE a source line trace.

LINE (Call) a source line marking the caller of a method.

COMMENT a probe logged a comment.

PROGRAM_COMMENT a comment logged at program start.

TRACEBACK a probe logged a traceback.

TEXT unformatted program or probe output.

EXCEPTION An exception-triggered snapshot

SYN_CALL_COUNTS synthesized (event-based) call count table.

JAVA_LOAD_SHED information about methods disabled byload shed-
ding.

SYN_JAVA_CALL_COUNTS
synthesized (event-based) call count table

JAVA_CLASS_LOAD dynamic load of a Java class

JAVA_CLASS_LOADS a table of all dynamically-loaded classes

In addition, there are “user event” nodes, marked with au icon, which may have
various labels. Examples of user events are program statistics inserted from
Probes Pane; exception events added by theexceptions or java_exceptions pre-
defined UALs; and “Data File Change” events indicating the point in time whe
a new data file was started.

Also, there are snapshot events, indicated by a black S. This will be followed by
the event name, such as EXCEPTION or ROOTCAUSE_SNAPSHOT.

Trace Display Popup
Menu

Select a node in the tree and use the right mouse button (MB3) to display a po
menu. This displays the operations available in theEdit Menu:

• Deselect Function In Trace Setup

• Find Function In Trace Setup

• Find Class In Trace Setup

• Find Function In Trace Events

• Find Source

• Show Associated Table

• Find Text in Trace Events
RootCause GUI Reference 8-41

Trace Display

d

 with
f the

d
d

).
le,
e
ds

ell.
In addition, the following operations from theFile Menu are provided to operate
upon APP_TRACED nodes and APP_START nodes:

• Add Selected Process Data

• Open Associated Workspace

Source Pane TheSource Pane displays the source file associated with the currently selecte
trace event in theEvent Trace Tree. If the event doesn’t have source associated
with it, some other explanatory text may be shown.

Event Details Pane TheEvent Details Pane displays additional data associated with the currently
selected event in theEvent Trace Tree. This includes data items logged on entry
to or exit from methods and when a line is reached, and the time associated
each event. Complex details are organized as a tree; expand the branches o
details tree to view the data.

Call Stack Pane TheCall Stack Pane displays the simulated call stack for the currently selecte
event in theEvent Trace Tree. This includes only methods that have been trace
(and appear in the Event Trace Tree). The user should log tracebacks usingLog
Traceback in theProbes Pane of theTrace Setup Dialog to get the actual call
stack.

Program Information
Pane

TheProgram Information Pane,labeled “Program Info”, displays information
about the program(s) that were traced and the threads within the program(s
Each displayed APD file will be represented by a node describing the APD fi
the program, the process, and the computer “HostID”. Beneath each APD fil
will be nodes for the program start and end, and nodes for each of the threa
started by the program.

If the log_env predefined UAL was selected in theWorkspace Tree, the informa-
tion recorded by that probe will appear in the program information pane as w

Data Files Pane TheData Files Pane displays the data files from which the trace was built.
8-42 RootCause GUI Reference

Find Text in Trace Events Dialog

-
oint

vious
di-
odes

the
 the

pe-

le of

ick

S

ct a
u.
s in
Find Text in Trace
Events Dialog

TheFind Text in Trace Events Dialogis opened by clicking theFind button along
the top of the window, or choosingFind Text in Trace Eventsfrom theEdit Menu
or theTrace Display Popup Menu. It is used to search for trace events that con
tain a given pattern. You can select a trace event in the tree to be the starting p
of the search (otherwise it starts at the first event). You specify the string to
search for, and can choose to consider case when matching. The next or pre
event that contains the given search string will be selected, or a dialog will in
cate that no matches were found. Note that you can select alternate starting n
while the search dialog is visible to direct the search.

Buttons

Use theNext button to find the next occurrence of the string in an event. Use
Previous button to find the previous occurrence of the string in an event. Use
Cancel button to dismiss the search dialog. Use theHelp button to figure out
what is going on and how to get things done.

Table Dialog TheTable Dialog is used to display table data associated with trace events, s
cifically the CALL_COUNTS, LOAD_SHED, and JAVA_CLASS_LOADS
events. The Table Dialog displays a description of the data at the top, the tab
data in the center, and a legend at the bottom.

You can sort on a column of the table by clicking the label of that column. Cl
again to reverse the sort.

CALL_COUNTS Table The Call Counts Table Dialog associated with the SYN_JAVA_CALL_COUNT
nodes is the

Call Counts Table Popup Menu

The table data contains method names and the call count for each one. Sele
row in the table and use the right mouse button (MB3) to display a popup men
This provides the same operations as are available on ENTRY and EXIT node
theEvent Trace Tree:

• Deselect Function In Trace Setup

• Find Function In Trace Setup

• Find Class In Trace Setup

• Find Function In Trace Events
RootCause GUI Reference 8-43

Table Dialog

g the

ight

g the

d
ich

h it

tus
In addition, the operation

• Find Class in Trace Events

is provided to search from the start of the event tree for the class name usin
Find Text in Trace Events Dialog.

Buttons

Use theDismiss button to dismiss the dialog. Use theHelp button to figure out
what is going on and how to get things done.

JAVA_CLASS_LOADS
Table

The Java Class Loads Table Dialog is associated with the
JAVA_CLASS_LOADS node near the end of the event tree.

Java Class Loads Popup Menu

The table data contains class names. Select a row in the table and use the r
mouse button (MB3) to display a popup menu. This provides the following
operations:

• Find Class In Trace Setup

• Find Class in Trace Events

is provided to search from the start of the event tree for the class name usin
Find Text in Trace Events Dialog.

Buttons

Use theDismiss button to dismiss the dialog. Use theHelp button to figure out
what is going on and how to get things done.

LOAD_SHED Table TheLOAD_SHED Tableis associated with the LOAD_SHED ‘S’ node at the en
of the trace events tree. This table displays information about methods for wh
tracing was disabled byload shedding during the previous run due to excessive
overhead. Each entry shows the method that was disabled, the time at whic
was disabled (to compare to other elements in the tree), and it’sStatus: what will
happen to the method the next time it is traced from this workspace. The sta
may be:
8-44 RootCause GUI Reference

Table Dialog

ked

le

he

el

d
trl

ia-

-

e

Don’t Trace: don’t try to trace it next time (default);

Load Shed:disable if it takes too much time, (as for the previous run)

Don’t Shed: trace it, and don’t disable it even if overhead is high.

Only methods for which the action isLoad Shed will appear in the table will
appear in this table after the next trace. Those markedDon’t Trace will not be
traced at all and so will not appear in the trace event tree at all. And those mar
Don’t Shed will always be traced, regardless of overhead.

The status for all selected rows may be changed using operations in the tab
popup menu, described below.

The action for an individual row may be changed by clicking on the entry in t
Status column. This displays an option menu from which you may select the
desired status.

As with other tables, you can sort on a column of the table by clicking the lab
of that column. Click again to reverse the sort.

LOAD_SHED Table Popup Menu

The right mouse button (MB3) displays a popup menu to operate on selecte
rows in the table. You can use ‘Ctrl-A’ to select all items, or hold down the C
or Shift keys while clicking to select multiple items in the usual way.

The popup menu provides operations unique to the LOAD_SHED table:

Don’t Trace Selected Functions:Use theDon’t Trace Selected Functionsmenu
item to change the Status of the selected functions toDon’t Trace. All methods
marked asDon’t Traceare updated in the Trace Setup Dialog when the table d
log’s Update button is clicked.

Don’t Load Shed Selected Functions:Use theDon’t Load Shed Selected Func
tions menu item to change the Status of the selected functions toDon’t Shed.

Load Shed Selected Functions:Use theLoad Shed Selected Functions menu
item to change the Status of the selected functions back toLoad Shed, the default
behavior. The specific point at which a method may be load shed is set in th
Enable Load Shedding option of theGlobal Trace Options Dialog.
RootCause GUI Reference 8-45

Table Dialog

ble
The popup menu also provides these standard operations from theEdit Menu:

• Find Function In Trace Setup

• Find Function In Trace Events

Buttons

Use theUpdatebutton to apply any changes made to the Status fields in the ta
to the corresponding functions. Use theCancelbutton to dismiss the dialog with-
out making any changes. Use theHelp button to figure out what is going on and
how to get things done.
8-46 RootCause GUI Reference

Platform-Specific GUI Issues

dif-

can

e

ese
-

st

t the
st,

g
ura-
an-

l
e

Platform-Specific GUI
Issues

The RootCause GUI and
Different JREs

The RootCause GUI is implemented in Java. Java is supported differently on
ferent operating systems. The RootCause installation includes aJRE (Java
Runtime Environment), which is used by default when therootcause open com-
mand is run. If you would prefer to use a Java installation other than the one
shipped with RootCause you may define the environment variable
APROBE_JRE to point to the java program, for example:

export APROBE_JRE=$(whence java)

or

setenv APROBE_JRE /opt/j2re1_3_101/bin/java

Note that this must be Java version 1.2.2 or newer.

Solaris RootCause is shipped with twoJREs to ensure that the GUI will run on
all versions. You will find that Java runs best on Solaris 8 or newer, where it
use the newest JRE.

AIX version 5.1 or newer is required to run the Java 2 runtime required by th
RootCause GUI and other workspace-related commands that use Java.

X-emulators: (Exceed,
Reflection)

We have written the RootCause GUI in Java using the Swing components. Th
Swing components do not work well with X windows emulators such as Hum
mingbird Exceed and Reflection. We are investigating this, but the GUI is be
viewed from a native Unix X display.

We have seen that if you set eXceed to use an X window manager, and star
Motif window manager (mwm) or a similar window manager on the Solaris ho
this works around the common problems seen with Exceed.

To do this, go to the Exceed configuration (you can get to this by right-clickin
on the Exceed button in the toolbar if it's running and selecting Tools/Config
tion). Next, select Screen Definition, and in the 'Screen 0' tab, set Window M
ger to be “X”. Click “OK” when prompted to perform a server reset which wil
then close all of your X windows. Open a new Exceed X window and start th
Motif windows manager by executing/usr/dt/bin/dtwm . Then launch the
RootCause GUI Reference 8-47

Platform-Specific GUI Issues

w-

hen
in-
lt

in-

ing
her

,
in-
-

set to

eed

,
 on

ou

ult
-

RootCause GUI from this window. GUI presentation should be improved, ho
ever there may be no window borders.

If the RootCause windows do not appear as described in the documentation w
running with a Reflection X server, open the X Client Manager, and select W
dow Manager from the Tools menu. Select Microsoft Windows as the Defau
Local Window manager. Select Microsoft Windows desktop as the Window
mode. Note that you must reset the Reflection X server for a change in the W
dow Mode to take effect, which will close all of your X applications. HitOK or
Apply to commit any changes you have made.

RootCause has been exercised under Reflection X Version 8, the version be
shipped by WRQ as of 2001-06. These directions may or may not apply to ot
versions. Contact support@ocsystems.com for further details.

APROBE_WM_WORKAROUND Environment Variable

The APROBE_WM_WORKAROUND environment variable, when set to true
will stop the RootCause GUI from trying to set the location or size of shell w
dows. We have found that this eliminates a lot of problems when using an X
server such as Exceed to display the RootCause GUI. The default value is
false.

Some GUI windows are not displayed correctly on a PC when using the Exc
X-server with a "native" window manager while logged onto a Solaris or Unix
platform.

The problem is that, even though the GUI requests a window position or size
these "hints" are not always honored by the native window manager running
the PC. The result is often incorrect window size or placement.

If you are using a native window manager that does not honor these hints, y
can set APROBE_WM_WORKAROUND to prohibit the RootCause GUI from
requesting them.

APROBE_MONOSPACED_FONT Environment Variable

The APROBE_MONOSPACED_FONT environment variable allows the defa
monospaced font to be changed. We have found that using a different mono
spaced font eliminates some font problems when using an X-server such as
Exceed to display the RootCause GUI.
8-48 RootCause GUI Reference

Platform-Specific GUI Issues

prop-
the

-
ava-
s

sed
 used
le,

lso
s

be
n
elds

-
py
lt

ris 8
ere

/

ould:
The font assigned to this environment variable is passed through as a Java
erty that is used in UserPreferences. Unfortunately, it is difficult to determine
correct font to specify. We have had good results with the following alternate
monospaced fonts:

APROBE_MONOSPACED_FONT=LucidaSansTypewriter-PLAIN-12

APROBE_MONOSPACED_FONT=monospaced-PLAIN12

Setting Background
Colors

The properties in therootcause.properties file, described inChapter 7, "Root-
Cause Files and Environment Variables", specify the background color for Root
Cause windows. The default is white, but you can change this to any of the J
defined color names, or using a 6-character hexadecimal RGB value such a
#FAEBD7.

Copy/Paste to/from
Clipboard

The RootCause GUI is implemented in Java. Prior to JRE 1.4 the mouse-ba
copy and paste operations didn't work for JTextField and JTextPane classes
in RootCause. RootCause includes a version 1.4 JRE which it uses if possib
which is generally only on Solaris 8 and newer.

On earlier versions of the JRE, including the “fallback” version 1.2.2 that is a
included with RootCause, there were two problems. The biggest problem wa
that these classes didn't have built-in support for cut/copy/paste but it could
explicitly added. We have added this explicit support for the RootCause mai
window's Message pane, but not for text areas like the Source pane or text fi
in dialogs.

The other problem was that, even for explicitly implemented clipboard opera
tions, 0the “clipboard” buffer that Java read from for Paste and wrote to for Co
was not the same as the “primary selection” buffer read/written by the defau
mouse-based operations.

There's nothing to be done about the first problem; unless you're using Sola
you won't be able to copy or paste from text fields in RootCause. However, th
is a workaround for the second problem:

There is an application called “xclipboard” that's standard on Solaris (in /usr
openwin/bin) that provides an interface between these two X Windows clip-
boards. So to copy something from the RootCause message window, one w
RootCause GUI Reference 8-49

Platform-Specific GUI Issues

-

in-

 win-

ame
plica-
h
er, if
1. Start the xclipboard application

2. Select the desired text from the RootCause message window

3. Use the"Copy"operation in the workspaceEdit Menuor Messages Pane pop
up menu.

The copied text will appear in the xclipboard window.

4. Use your mouse in the normal way to copy the text from the xclipboard w
dow.

5. Use your mouse in the normal way to paste to some other (e.g., mailer)
dow.

A more drastic alternative is to change your X resources to always use the s
clipboard as Java does. This requires that you restart all xterms and other ap
tions from which you might want to copy/paste, and can be cumbersome wit
other applications that use both kinds of clipboards such as xemacs. Howev
you insist, you add the following to your X resources:

*.VT100.Translations:#override \
\~Shift \~Ctrl \~Meta <Btn1Up>:select-end(CLIPBOARD)\n\
\~Shift \~Ctrl \~Meta <Btn2Up>:insert-selection(CLIPBOARD)
\n
8-50 RootCause GUI Reference

CHAPTER 9 RootCause Command
Reference
use
has
The following commands are available from the command line after RootCa
has been installed and the setup script in the RootCause installation directory
been executed (seeChapter 4, "Getting Started").
9-1

RootCause and Different Shells

es

,

hat

n”
RootCause and
Different Shells

Different shells on Solaris have different capabilities. The following differenc
apply to the different shells:

sh (Bourne shell):

Therootcause_on androotcause_off commands are not available. Instead
you must use the dot commands:

. rootcause_enable

. rootcause_disable

ksh (Korn shell)

You may userootcause on androotcause off instead ofrootcause_on ,
androotcause_off , because rootcause is defined as a shell function. Note t
RootCause requires thatksh be installed, though you need not use it as your
shell. On Linux you may have to installpdksh .

csh (C shell)

rootcause_on and rootcause_off are aliases defined in your shell when you
“source” setup.csh. C shell does not support shell functions, so “rootcause o
and “rootcause off” won’t work.

bash

The setup script and shell functions forksh work for bash as well. However, ksh
is still needed for install_rootcause, rootcause_status, and other scripts.
9-2 RootCause Command Reference

rootcause

n
d

rootcause Therootcause command is designed to run in a simple, intuitive manner whe
default file names are used. When run with no arguments, it gives version an
license information. When run with rootcause -h, it shows the following com-
mands, which are described in detail in this chapter.

rootcause build build traces/probes in workspace.

rootcause collect collect agent workspace data for analysis.

rootcause config show current configuration information.

rootcause decollect unpack collected workspace data for analysis.

rootcause deploy package a workspace for remote deployment.

rootcause format format data in workspace.

rootcause log perform operations on rootcause log file.

rootcause merge merge two workspaces to create a third.

rootcause new create a new workspace.

rootcause_off disable rootcause intercept of applications.

rootcause_on enable rootcause intercept of applications.

rootcause open start the RootCause GUI.

rootcause register register an application with a workspace.

rootcause run run any command under rootcause.

rootcause status show if rootcause is enabled.

rootcause xrun run a command under rootcause in a separate window.
RootCause Command Reference 9-3

rootcause build

t-
d,
n-

lose

ged:

n lo-
rootcause build Therootcause build command updates a RootCause workspace without
opening the GUI. This is useful for maintaining workspaces as part of a scrip
driven product development process. The location of a workspace is provide
along with paths to all relevant programs and modules whose locations or co
tents may have changed. Note that a side-effect of this process may be to
traces that no longer apply to a changed module.

Syntax:
rootcause build

[-Fh] [-x program_file | file .class | file .jar]
[-m module]*
[-w] workspace .aws

Options:

-F force the build even if the workspace is locked.

-h give this command’s usage

-x program_file
the executable program, or the.class or .jar file containing
your Java application’s main entry. This is the same as the ar-
gument toReset Program in the GUI.

-m module the path of adynamic modulethat the program applies to. This
is the same as the argument toReset Dynamic Module in the
GUI.

-w workspace.aws
an existing RootCause workspace.

Examples:

1. Rebuild workspace Pi.aws against current modules in case they’ve chan

rootcause build Pi.aws

2. Update the RootCause self-analysis workspace for the current installatio
cation:

rootcause build -x $APROBE/lib/probeit.jar
-m $APROBE/lib/libdebugInfo.so
-w $APROBE/arca.aws
9-4 RootCause Command Reference

rootcause collect

e
data
t-
naly-

sses,
fied
are

ork-
my-
rootcause collect Therootcause collect command is executed on a remote computer wher
the RootCause Agent component has been installed to gather the RootCause
together into a single.clct file to be transmitted to a computer where the Roo
Cause GUI component has been installed for subsequent decollection and a
sis. It examines the rootcause registry to determine the workspace for the cla
if no workspace is specified. Multiple classes and workspaces may be speci
for collection. If no arguments are supplied, the RootCause log and registry
collected.

Syntax:
rootcause collect

[- AFh] [-o clct_file] [-f other_file]
[[-x] program_file | -c class | [-w] workspace .aws]...

Options:

-A suppress generation and collection of for native modules. This
might be done to reduce the download size if you are sure the
local and remote modules are identical.

-F force overwriting ofclct_file, if present.

-h give this command’s usage

-o clct_file the collect file to create (default:first_argument.clct)

-f other_file any other file (not directory) to be added to theclct_file. You
can also simply copy files or directories into the workspace.

-x program_file
the registered program to which deployed workspace applies

-c class the registered Java class to which deployed workspace applies

-w workspace
the workspace contents to be collected if program or class is not
known

Examples:

1. The following command collects the data for the Java class Pi and the w
space fred.aws and places those two RootCause traces into the single file
server.clct.

rootcause collect -c Pi -w fred.aws -o myserver.clct
RootCause Command Reference 9-5

rootcause config

ith
rootcause config The rootcause config command reports current configuration information. W
no arguments it shows the installation directory and license information.

Syntax:
rootcause config [-dhlLnRuvV]

Options:

-d give installation directory (that is, the value of $APROBE)

-h give this command’s usage

-l give license information

-L give application log path ($APROBE_LOG or default loca-
tion).

-n give product name (Console or Agent).

-R give application log path ($APROBE_REGISTRY or default
location).

-u give user directory ($APROBE_HOME or default).

-v give product version number.

-V give product version description (default).

Examples:

1. Show the current installation information:

$ rootcause config
RootCause Console 2.0.5 (030405)
Installed in /app1/product/aprobe
This product is licensed to 1111 OC Systems, Inc.
This license will expire on 31-dec-2003.
9-6 RootCause Command Reference

rootcause decollect
rootcause decollect The rootcause decollect command unpackas a.clct file built by therootcause
collect command. This function is also performed by theDecollect operation in
the RootCause GUI (see"Decollect Data Dialog" on page 8-21).

The result of this operation is a directory tree whose root directory has suffix
.dclct .

Syntax:
rootcause decollect [-F] [-o directory] clct_file

Options:

-F force delete ofdirectory, if present

-o directory extract intodirectory (default:clct_file_name.dclct)

clct_file collect file that was built byrootcause collect

Examples:

1. Decollect the data inmyserver.clct into myserver.dclct

rootcause decollect myserver.clct
RootCause Command Reference 9-7

rootcause deploy

ply.
rootcause deploy The rootcause deploy command packages aworkspace for use in aremote
(agent) environment. This function is also performed by theDeploy operation in
the RootCause GUI (see"Deploy Dialog" on page 8-19). The result of this oper-
ation is a zip file with suffix.dply . Note that this command does not verify the
workspace is already built. If you’re not sure, dorootcause build first.

Syntax:
rootcause deploy

[-Fh][[-x] program_file | [-c class] [-w] workspace .aws]
[-l license_file] [-m module][-o dply_file]

Options:

-c class the Java class registered with the workspace you wish to deploy.

-F force overwriting ofdply_file, if present.

-h give this command’s usage

-l license_file
the agent license file to include in the deployed workspace (de-
fault $APROBE/licenses/agent_license.dat .

-m module is amodule (shared library) for which anADI file should be
generated.

-o dply_file the deploy file to create (default:workspace.clct)

-x program_file
the program registered with the workspace you wish to deploy.

-w workspace.aws
an existing,built RootCause workspace.

Examples:

1. Deploy workspace Pi.aws.

rootcause deploy Pi.aws.

2. Deploy workspace forclass Factor and module libFactor.so into Factor.d

rootcause deploy -c Factor -m /app/lib/libFactor.so -o
Factor.dply
9-8 RootCause Command Reference

rootcause format

-

unts
n

rootcause format The rootcause format command runsapformat on the data collected in the speci
fied workspace. This produces output similar to that produced bySave As Textin
the RootCause GUI. By defaultrootcause format operates on the most cur-
rent process. Because it formats all the data it can take a while for large amo
of data. You can use the -O option in conjunction with the apformat “-n” optio
to limit it to specific APD files, as shown in Example 3 below.

Syntax:
rootcause format

[-hlr][-p PID][-O " options "][-t tmpdir]
[-w] workspace .aws

Options:

-h give this command’s usage

-l list theAPD rings (Process Data Sets) in the workspace, but
don’t format anything. The newest data set is listed first.

-r raw: just run apformat directly on the APD file (with options
specified using-O) rather than using the workspace’s format-
ting script.

-p PID format data for the process given byPID

-O " options"
passoptionsto the apformat command. The options must be in
quotes, and quotes in the options themselves must be preceded
by a backslash.

-t tmpdir specifies the directory where intermediate files are to be pro-
duced. These can get very large--up to 10 times the size of the
APD files depending on the formatting--and this can be used to
avoid disk-space restrictions where the workspace resides.

-w workspace.aws
the RootCause workspace containing the data to be formatted.

Examples:

1. Format the newest data set in Pi.aws into the filePi.txt .

rootcause format Pi.aws > Pi.txt
RootCause Command Reference 9-9

rootcause format

.

2. List theProcess Data Set in workspace Pi.aws.

$ rootcause format -l Pi.aws
/work/Pi.aws/Pi.class.apd.11991/Pi.class.apd
/work/Pi.aws/Pi.class.apd.11785/Pi.class.apd

3. Runapformat directly on the newest data file for process 11785 in Pi.aws

rootcause format -r -O "-n 0" -p 11785 Pi.aws
9-10 RootCause Command Reference

rootcause log

g,
rootcause log Therootcause log command provides information about the RootCause Lo
and allows its maximum size to be changed.

Syntax:
rootcause log [-hlnsFZ | -s size]

Options:

-F force -s size or -Z operation without confirmation

-h give command-line help

-l list log file contents to standard output

-n list the log file name to standard output

-s list the log file size to standard output

-s size set the maximum size of the log tosize bytes (size > 1000)

-Z clear the contents of the log file

Examples:

1. Write the contents of the log to standard output:

rootcause log

2. Set the size of the log to 20000 bytes:

rootcause log -s 20000
RootCause Command Reference 9-11

rootcause merge

con-

plica-

e Pi-
rootcause merge Therootcause merge command merges twoworkspaces to create a new, third
workspace. It works by copying the firstprimary workspace to the thirdresult
workspace, then adding compatible traces and UALs from the secondsecondary
workspace. Amodule must exist in both theprimary andsecondary workspaces
in order that traces for that module appear in theresult workspace.

There is no GUI operation equivalent to rootcause merge. You can use it in
junction with the GUI by:

• UsingWorkspace->Close to close your current workspace

• Applying rootcause merge from the command line

• UsingWorkspace->Open on the result workspace.

Note: Therootcause build androotcause register operations must be applied to
theresult workspace before the result workspace can be used to trace an ap
tion.

Syntax:
rootcause merge [-Fh] primary .aws secondary .aws result .aws

Options:

-F forceresult.aws to be overwritten if it exists

-h give command-line help

primary.aws
The primary workspace, on which the result workspace is
based.

secondary.aws
The secondary workspace, from which additional traces and
UALS are added to the result workspace.

result.aws The new workspace that is created.

Examples:

1. Merge traces in PiDetails.aws into Pi.aws to produce PiPlus.aws and mak
Plus.aws the new workspace for tracing Pi.

rootcause merge PiDetails.aws Pi.aws PiPlus.aws
rootcause build -w PiPlus.aws
rootcause register -c Pi -w PiPlus.aws
9-12 RootCause Command Reference

rootcause new

ass.
rootcause new The rootcause new command creates a newworkspace. Generally this is done
through the RootCause GUI using theNew menu item orOpen Associated
Workspace; (see"New Workspace Dialog" on page 8-9). The result of this oper-
ation is the named workspace, initialized to do default tracing. If the-r option is
used, the workspace is also registered with the specified program or Java cl

Syntax:
rootcause new

[-Fhr][-c class] -x program_file [-w] workspace .aws]

Options:

-c class the Java class registered with the workspace you wish to deploy.

-F force overwriting ofworkspace.aws if it exists.

-h give this command’s usage

-r register the new workspace with the specified program or Java
class

-x program_file
the executable program or Java.class or .jar file the work-
space will be used to trace (as on therootcause opencommand).

-w workspace.aws
the new workspace to be created.

Examples:

1. Create and register a new workspace for Pi.class.

rootcause new -r -x Pi.class -c Pi -w Pi.aws.
RootCause Command Reference 9-13

rootcause_off

o-
e.
rootcause_off Use therootcause_off command to disable rootcause interception of pro-
cesses on your machine.

Syntax:
rootcause_off

rootcause_on Use therootcause_on command to start the inspection and interception of pr
cesses on your machine to determine if they should be traced with rootcaus

Syntax:
rootcause_on
9-14 RootCause Command Reference

rootcause open

 set
ot
pli-
ed.

Dis-

aws.

lass

lass
rootcause open Therootcause open command starts the RootCause GUI. If the application
class specified on the command line is registered, the GUI will automatically
the workspace from the registry entry for the application. If the application is n
registered, the GUI will prompt for a new workspace name and register the ap
cation. If no arguments are specified, the current RootCause Log file is open

Syntax:
rootcause open

[[-x] program_file]
[-c classname] [[-w] workspace .aws]
[[-d] dir .dclct | [-z] file .clct]

Options:

program_file
the executable program file, or the the.class or .jar file con-
taining your Java application’s main entry

classname the main class name. This is required ifclassname is not the
same asfile

workspace.aws
a new or existing RootCause workspace

dir.dclct a directory created by the RootCauseDecollect operation

file.clct a file created by therootcause collect command

Examples:

1. Start the RootCause GUI and examine the RootCause Log file in a Trace
play window.

rootcause open

2. Start the RootCause GUI to open new or existing workspace converter.

rootcause open converter.aws

3. Start the RootCause GUI to open a new or existing workspace for main c
Pi compiled into file Pi.class.

rootcause open Pi.class

4. Start the RootCause GUI to open a new or existing workspace for main c
com.ocsystems.probeit.Main compiled into file probeit.jar.

rootcause open probeit.jar -c com.ocsystems.probeit.Main
RootCause Command Reference 9-15

rootcause open

ta in
5. Start the RootCause GUI to unpack (decollect) the collected rootcause da
pi_demo.clct.

rootcause open pi_demo.clct
9-16 RootCause Command Reference

rootcause register

e
he
 reg-

ere

:

rootcause register Therootcause register command provides the interface to the RootCaus
registry. The GUI will allow you to add or delete the current workspace from t
registry, but you must use the register command to otherwise manipulate the
istry. It is likely that, over time, more GUI support will be added to manipulate
the registry, but on computers where only the RootCause Agent is installed, th
is no GUI and theregister command must be used.

Syntax:
rootcause register [subcommand] options [deploy_file]

Description:

subcommand.Thesubcommand flag designates the operation to be performed

-a add a new entry in the registry (default)

-d delete an entry from the registry

-h give command help

-k return 0 iff specified args are already registered & enabled

-l lists all registry contents

-lr list registry name only

-lw list workspace name only

-lx list only registered JVM or class only

-s debug enable/disable debug mode with-e on/off (off by default)

-s verbose enable/disable verbose mode with -eon/off (on by default)
With verbose mode on, all processes are recorded in the log;
with verbose off, only traced applications are recorded.

-Z clear entire registry contents, including-s settings, returning
them to their default values.

options. Options further qualifying the above are:

-c classnameprobe Java commands naming main classclassname

-e on | off off specifies 'disabled' (default: on)

-F force without confirmation

-j dir dir is root of JRE containing java exe to probe

-m file file is a module required fordeploy_file consistency checking
RootCause Command Reference 9-17

rootcause register
-r file file is registry file to use

-w dir.aws file is workspace to use

-x file file is executable to probe

deploy_file is a.dply file to unpack into a registered workspace

Examples:

1. List the registry name and contents:

rootcause register -l

2. Delete the registry entry forclass Pi :

rootcause register -d -c Pi

3. Turn off recording of all processes in the RootCause log:

rootcause register -s verbose -e off

4. The following command will do the following all in one step:

• register the program

• create the workspace (if it does not exist)

• deploy the trace into the workspace

This would be the typical command used on a remote computer where
only the RootCause Agent component was installed in order to imple-
ment a .dply file generated by the RootCause GUI component. After this
command is issued, you would merely execute rootcause_on in the con-
text of the shell and run the application.

rootcause register jfrob.dply
9-18 RootCause Command Reference

rootcause run

.

rootcause run Userootcause run before your command to cause it to berun with rootcause
on, independent of the currentrootcause status. The command specified will be
run in the current window exactly as if it were not preceded by rootcause run
This is equivalent to

rootcause_on
command
rootcause_off

Syntax:
rootcause run command

Options:

command any shell command

Example:

1. Run the Pi application with rootcause on:

rootcause run java -cp $APROBE/demo/RootCause/Java Pi

rootcause xrun Identical torootcause run, but thecommand is run in a separate window. This is
used by theRun button in the RootCause GUI.

Syntax:
rootcause xrun command

rootcause status Use therootcause status command to show whether rootcause tracing is
currently enabled or disabled.

Syntax:
rootcause status
RootCause Command Reference 9-19

rootcause status
9-20 RootCause Command Reference

CHAPTER 10 Selected Topics
of

f it

o the
use
will
g as

ized
he
and
of

ch
next
n

This chapter contains discussions of various RootCause topics that may be
interest to you, the RootCause user.

RootCause and
Efficiency Concerns

RootCause should preferably be installed on a local file system. It will work i
is mounted on a remote file system, but this may also impact performance.

The RootCause workspace should be created on a file system that is local t
machine on which the traced process will be run. The data logged by RootCa
is written to the workspace. If the workspace is remote, then the logged data
have to be transmitted across the network, increasing the overhead of loggin
much as tenfold. See also,"RootCause Data Management" on page 3-4.

RootCause adds probes to the application in memory. These probes are optim
machine code, so while they are fast, they must of course add overhead to t
execution of the application. RootCause only “patches” the traced functions
methods. For Java, RootCause inserts byte code to only trace the methods
interest, not all methods.

Furthermore, RootCause tracing applies automatic “load shedding” to automati-
cally turn off tracing of functions that are introducing high trace overhead. Su
functions can then be removed from the trace specification by the user in the
run. Using this mechanism and by adjusting the load shedding level, one ca
10-1

RootCause and Efficiency Concerns

e. In
load
t-

s

 to
n an

uch
quickly get to an acceptable level of overhead. See"RootCause Overhead Man-
agement" on page 3-7.

Typically, we have seen that one can add a 5% load and still get a useful trac
general, you will have to iterate to define a good trace that adds a reasonable
so the application can still run in the operational environment. Note that Roo
Cause supports this workflow, by allowing one to choose (and remove) trace
items from the viewer to speed the removal of “noise” routines (noise routine
are those that add little value to the trace).

Note that a program being probed by RootCause, will take somewhat longer
start. Typically, a few extra seconds are required for a RootCause session o
application. This minimal overhead is incurred because RootCause does as m
as possible up-front, to reduce the runtime penalty later.
10-2 Selected Topics

Solaris SETUID, and Security Concerns

rtain
r

and

ire

setuid
lica-
laris
ith-

) bit
ch

If
ET-

as

ive
Solaris SETUID, and
Security Concerns

This section briefly describes how RootCause / Aprobe can be used with ce
“secure” applications on Solaris. These mechanisms are not yet provided fo
other platforms; contact OC Systems for more information.

The Solaris operating system provides a secure environment for debugging
running your applications. RootCause and Aprobe do not interfere with this
mechanism but extend it to work safely in a number of environments that requ
it.

For the purposes of this document, a secure application is one that has the
bit set. We discuss how the Solaris security mechanism works with these app
tions and how Aprobe and RootCause provide their own extensions to the So
security protections to allow you to safely run probes on these applications w
out compromising system security.

Note that this document does not discuss applications with the setgid (group
set. At the time of writing, Aprobe and RootCause do not support running su
applications.

Avoiding Solaris Warnings

Even if you do not wish to probe secure applications, you may want to place
libapaudit.so in the secure location anyway to eliminate error messages.
you do not do this and try to run RootCause on an application that has the S
UID bit set, you will get an error message something like:

ld.so.1: mail: warning: /opt/RootCause/lib/libapaudit.so:
open failed: illegal insecure pathname

ld.so.1: mail: fatal: /opt/RootCause/lib/libapaudit.so: audit
initialization failure: disabled.

Although these look like fatal errors, the application ran without error, and it w
only the loading oflibapaudit.so that failed.

Placinglibapaudit.so in the secure location as described below will allow
libapaudit.so to load for SETUID applications like/usr/bin/mail, so it can
determine whether to probe the new process or not.

Note that just placinglibapaudit.so in the secure location doesnotallow one
to actually probe the SETUID application unless one is running as the effect
user.
Selected Topics 10-3

Solaris SETUID, and Security Concerns

 of

.

.

iate
it’s

laris

wo
er -
The secure path for dynamically-loaded libraries is different on each version
Solaris. This logic is encapsulated in a script,rootcause_libpath.

The simplest usage is:

1. Log on as root so you have write access to /usr/lib and its subdirectories

2. Set up for using RootCause, e.g.,

. /opt/RootCause/setup

(see"The Setup Script" on page 4-1).

3. Run the command:

rootcause_libpath -c

This will copy the appropriate library to the secure locations. These lo-
cations are under /usr/lib, so you must be super-user. The script assumes
that you are set up for RootCause, so you must run the RootCause setup
script first. You should see output like:

/usr/lib/libapaudit.so correctly installed.
/usr/lib/secure/libapaudit.so correctly installed.
/usr/lib/64/libapaudit.so correctly installed.
/usr/lib/secure/64/libapaudit.so correctly installed.

4. Log off root on this machine.

5. You will need to do this on each machine on which you use RootCause

6. After doing this, you will need to dorootcause_off , thenrootcause_on
again to pick up the new values.

Description of Solaris Security

This section briefly describes the Solaris security measures that are appropr
for RootCause / Aprobe. It should be noted that each version of Solaris has
own subtle variations on this. All examples given are for Solaris 8 and over
although, with the exception of Solaris 2.5.1, RootCause and Aprobe can be
expected to behave identically on older versions as far as security goes. (So
2.5.1 has overly tight restrictions that were corrected in later versions).

The first concept that must be understood is that every executable run has t
users associated with it at runtime. The first is the “real” user, the logged in us
10-4 Selected Topics

Solaris SETUID, and Security Concerns

e”

re
you

it is
tch
to

we
,

ion?
truc-

ries
nd

lities

y

en-
ure
the user shown when you use the command “id”. The second is the “effectiv
user which really governs the permissions you have during runtime.

(One important point is that if the real user is root, all security mechanisms a
effectively disabled because they are moot. One practical result of this is that
may use Aprobe on any application if you are logged in as root).

Normally the real and the effective user are the same. If, however, the setuid b
set on an application, the operating system changes the effective user to ma
the owner of that application. Most commonly this is the root user and is done
give a regular user temporary access to a limited set of secure resources.

Let’s take the “/usr/bin/at” command as an example. The output from “ls -l”
might look like this:

 -rwsr-xr-x 1 root sys 37876 Jul 10 2000 /usr/bin/at

Note that instead of an ‘x’ where we would expect the owner’s executable bit,
see a ‘s’. This means that the application will run with the effective user root
with all the permissions that that allows.

What would happen if we were allowed to attach a debugger to this applicat
Suddenly we would be able to cause the application to execute arbitrary ins
tions as if it were root! To prevent this, the operating system will prevent the
debugger interface being used in such a situation. (Again, if you are actually
logged in as root, you will be allowed access).

Another aspect of security for these applications is where they load their libra
from. Obviously the application can have a set of specific libraries linked in a
these can be safely loaded. But the runtime linker also provides some capabi
to add arbitrary shared libraries in using theLD_PRELOAD andLD_AUDIT runt-
ime linker environment variables. Once again it would be a security risk if an
library could be specified, so the operating system only allows libraries in
“secure” paths to be loaded by these environment variables.

Impact of Security Measures on Aprobe

When we run the “aprobe” command on an executable, we start out life as a
debugger, patching in the probes that we’ve specified. Once this is done, the
“aprobe” executable detaches from the application and goes away. As was m
tioned above, Solaris will not allow the use of the debugger interface on a sec
Selected Topics 10-5

Solaris SETUID, and Security Concerns

ly

 run
tion:

for

o
the
be

the

,
le-

 for

e
em
application. Aprobe will specifically check for this so it can give a more friend
warning if you try to run it:

$ aprobe /usr/bin/at
(E) /usr/bin/at
This file is owned by root and has the setuid bit set.
You need to use the secure version of aprobe (saprobe) to run this
application under Aprobe. Please see the section on secure applications
in the Aprobe user’s guide.

As this error describes, there is a secure version of Aprobe that allows us to
on these applications. In fact, there are three ways we could run this applica

1. Log in as root. As was mentioned above, security restrictions are moot
the root user and so Aprobe will run fine.

2. If you could rebuild or relink the application, you could link in the libdal.s
file that allows an executable to patch itself. The use of this is outside
boundaries of this document but you can find more details in the Apro
user’s guide.

3. Use the secure version of Aprobe mentioned above -saprobe . The secure
version itself has the setuid bit set so that it runs as root and can attach to
application.

It doesn’t take much thought to realize that option (2), if implemented blindly
could leave a big security hole in your application. But, of course, it isn’t imp
mented blindly. When you runsaprobe on an application, the application must
be listed in$APROBE/lib/secure_applications . This file is created so that
it is only writable by root and we check this is still the case at runtime before
allowing its use. Let’s see what happens when we try to run without an entry
it:

$ saprobe /usr/bin/at
(W) /usr/bin/at
You are running a secure application but the secure_applications file
did not contain an entry for it.
(F) Aprobe will not run this application due to security restrictions.
Please see the section on secure applications in the Aprobe user’s guide.

The second level of checking is that the files loaded by Aprobe - the runtime
libraries and the UALs - must all be owned by root and not writable by anyon
else. Additionally, for all UALs except the default system_ual, an entry for th
must exist in thesecure_applications file under that application. If it
doesn’t:
10-6 Selected Topics

Solaris SETUID, and Security Concerns

ed
DIT

n’t!

n-

oot-
rk-
saprobe -u trace /usr/bin/at
(W) "/app1/aprobeinst/fred/aprobe_sun_50/ual_lib/trace.ual":
This ual is not valid for your secure application. It must be listed in
the secure_applications file under this application.
(F) Aprobe will not run this application due to security restrictions.
Please see the section on secure applications in the Aprobe user’s guide.

The format of thesecure_applications file is defined in its header. However,
it is pretty trivial. For each application we allow we have an “APPLICATION”
keyword followed by any number of “FILE” keywords. Another APPLICATION
keyword automatically ends the list of allowed files. For instance:

APPLICATION /usr/bin/at
FILE /app1/aprobe/inst/fred/aprobe_sun_50/ual_lib/trace.ual
FILE /opt/product/probes/myprobe.ual

APPLICATION /usr/bin/another_app ...

Impact of Security Measures on RootCause

RootCause builds on top of Aprobe and so has the same protections describ
above. However, the RootCause intercept mechanism is based on the LD_AU
environment variable and must be managed appropriately.

By default, if you set LD_AUDIT to a specific path, Solaris will not load that
audit library when the application is run. Annoyingly, later versions of Solaris
give a misleading error message about this being a fatal condition which it is

If, however, the audit library is in a secure location and the LD_AUDIT enviro
ment variable is appropriately set, it will be loaded by the runtime linker. The
path to that library varies between versions of the O/S but, on Solaris 8 and
higher, is /usr/lib/secure.

So, to allow RootCause to intercept secure applications, the audit library is
placed within here. In order that this does not create a security risk in itself, R
Cause ensures that it will only run an application under RootCause if the wo
space’s script file is secure. If it isn’t, you’ll get an error message and the
application will be run without RootCause.

By this mechanism, we safely control access to the scripts that will execute
Aprobe and trigger the protections that Aprobe introduces.
Selected Topics 10-7

Solaris SETUID, and Security Concerns

ions
oes
ure
Ls.

un
e.

ven
 on
S
t-

 on
d to

n cre-
rk-
n of
rk-
s dia-

e-
Using the Secure Version of RootCause / Aprobe

The first step that must be taken is to provide appropriate ownership, permiss
and location of certain RootCause files. A normal installation of RootCause d
not have a secure version of Aprobe, it doesn’t locate the audit libraries in sec
paths and it may not have appropriate ownership of runtime libraries and UA

To create a secure environment, you must log in as root and run the
rootcause_libpath script. This takes a number of parameters and must be r
on each machines on which you wish to use the secure version of RootCaus

There are two main parts to this:

1. Creation of the secure Aprobe files. This must be performed once for a gi
installation of RootCause / Aprobe. In many networks it must be done
the machine that the installation is directly mounted on (e.g. many NF
mounted filesystems do not allow root write access from across the ne
work). The command to update the installation is

rootcause_libpath -s

This is described in more detail in"Avoiding Solaris Warnings" on page
10-3.

2. Creation of the secure RootCause files. This must be performed once
each machine you wish to intercept secure applications on. To comman
do this is

rootcause_libpath -c

 Note that you can combine this and the “-s” option where appropriate.

A secondary step for RootCause is to define the workspace as secure. Whe
ating a workspace, check the “Secure Application” checkbox to mark the wo
space as secure. This will create runtime scripts that invoke the secure versio
Aprobe. If, at a later time, you wish to change the security property of the wo
space, you can change it in the Aprobe options tab of the RootCause option
log (accessed from the Setup menu).

Note that if you build a secure workspace for a non-secure application or vic
versa, you will get error messages at runtime.
10-8 Selected Topics

64 bit applications

up-

ging

hem.
ro-

his

tions/
s are
ns.

le
ying
nd
ata
ces

, and

P

64 bit applications 64 bit applications are not yet supported by RootCause. If you require this s
port, please let us know.

Logging Controls One of the most fundamental features of RootCause is a robust and fast log
mechanism, both for persistent and wraparound data collection.

RootCause chooses sane defaults for logging, but you may want to change t
There are several main user-selectable options for logging application data p
vided in theRootCause Options Dialog.

See"RootCause Data Management" on page 3-4 for more information.

Multiple Application
Tracing

Each application puts its trace data into an application specific workspace. T
mapping of application to workspace is defined in the registry.

When viewing trace data, RootCause can add trace data from other applica
workspaces, so that you can view a fully integrated process trace. The trace
automatically ordered so there is a coherent time line for all traced applicatio

RootCause collects data into separate files to eliminate contention for a sing
logging buffer. For example, if you are tracing 10 processes and all 10 are tr
to write to the same buffer, then there will be much contention for that buffer a
performance would suffer. RootCause solves this problem by logging the d
into independent application specific workspaces and then combining the tra
in the GUI viewer.

A trace is merged with an existing trace using theAdd Selected Process Data
operation in theTrace Display Popup Menu of theTrace Display window. You
can then useSave As XML or Save As Text to save this merged trace for future
examination.

This is illustrated by the Advanced demo delivered with RootCause in$APROBE/

demo/RootCause/Advanced . See the README.html file in that directory for
a detailed description of that application, the separate Java and C++ portions
the merging of combined traces.

The ability to view a single time line trace of multiple processes (even on SM
computers) is a very powerful feature of RootCause.
Selected Topics 10-9

Multiple Executions of a Single Application

ve
cing

 each
ts to

on,
.
ocess
red
Multiple Executions of
a Single Application

It is not uncommon in production environments for a single application to ha
multiple processes executing simultaneously. RootCause handles this by tra
each process independently.

As mentioned previously, eachapplication has aworkspace. In the workspace
there are a number of sets ofProcess Data Sets.

RootCause automatically reuses the oldest of these process data sets upon
new invocation of the registered application. The number of process data se
keep is specified with “Keep logged data for N previous processes” in theRoot-
Cause Options Dialog.

So if you wish to trace a total of 10 simultaneous executions of your applicati
you will tell RootCause to createat least 10 process data sets in the workspace
Note that this mechanism can also be used to save serial executions of a pr
too. For example, if you would like to trace the last 4 executions of the registe
application, tell RootCause to keep 4 previous processes.

See"RootCause Data Management" on page 3-4 for more information.
10-10 Selected Topics

Libraries with No Debug Information

pro-

 pro-

f

nfor-

a-
s in
om
n.

plat-

’t
ely,

te

efini-
Libraries with No
Debug Information

The RootCause Console GUI takes advantage of Aprobe’s APC translator to
vide function prototype information for C object modules inshadow header files.

A shadow header file is a legal C header file, containing C type and function
totype definitions and C preprocessor directives (such as#include). The infor-
mation in this file supplements the information in a compiled object module o
the same name, resulting in more useful traces and custom probes.

When you click on the name of a compiled module, say “libc.so ”, in the Trace
Setup Dialog, this causes that module to be opened and searched for debug i
mation provided by the compiler. Then, ashadow header file corresponding to
that module--in this case, “libc.so.h”-- is searched for, and if found, the inform
tion found there correlated to the symbols read from the module. This result
otherwise “unknown” functions being grouped according to the header file fr
which they are read, and having parameter type (and often name) informatio

Shadow header files are searched for in a “shadow” subdirectory of the.rootcause
Directory (e.g., ~/.rootcause/shadow/libm.so.h), and if not found there, in
$APROBE/shadow.

OC Systems provides only one or two sample shadow header files on each
form. You’re encouraged to add your own, and to contact OC Systems if you
need help developing a header file for a particular library. Note that you don
have to provide all the prototypes in the library, only those you need. Convers
if there are a few extras that aren’t in the shadowed library that’s okay, too --
they’ll be ignored.

The easiest way to create such a file is simply to add#include preprocessor
directives for existing C header files provided with your system or compiler. No
that these must be C header files ending in.h , not C++ header files. These are
preprocessed using the same environment (include path and preprocessor d
tions) as theAPC files, but you can edit the files and add your own#define

directives as necessary.
Selected Topics 10-11

Your Application and Different JREs

he

for

me

oot-
gis-

UI,

o-

g the

for
Your Application and
Different JREs

If you’ve defined traces for a Java class in a workspace, but if after running t
application under RootCause, the RootCause Log shows only an
APP_STARTED (but not an APP_TRACED) event for the java program, this
indicates that it wasn’t recognized as Java. There could be several reasons
this:

1. The version of Java you’re running isn’t supported. Check the program na
in the rootcause log entry against the supported JREs identified in“System
Requirements” on page 2-2.

2. The JRE hierarchy in which RootCause looks for files was unusual, so R
Cause could not find the necessary files. In this case you can explicitly re
ter the JRE with the java executable using therootcause register command.
This is done automatically when applying a workspace to a class in the G
but the JRE in the execution environment may be different.

3. The program which is running your class isn’t “Java”, but some other pr
gram which loads a Java plug-in or DLL. See“Using RootCause on an Ap-
plication with an Embedded JVM” on page 10-12.

Using RootCause on
an Application with an
Embedded JVM

RootCause currently supports probing applications that process Java by usin
Sun version 1.2, 1.3 or 1.4 Java runtime ("libjvm.so") library. To do this:

• You will need a license for both RootCause for C++ and for RootCause
Java; contact OC Systems if you have questions about this.

• Set up a workspace for the application with the embedded JVM.

• Use “Add Dynamic Module” to add a Java class you wish to trace.

• When prompted, specify the full path to thelibjvm.so library that the pro-
gram uses.

• Set up a trace and run as usual.
10-12 Selected Topics

Tracing Java and C++ In One Program

 and
t-
es-
d C
s
e

d de-

ss to
tes

0-9.
Tracing Java and C++
In One Program

RootCause is designed to support both Java and compiled-language probes
traces in a single application. To do this, you will need a license for both Roo
Cause for Java and RootCause for C++; contact OC Systems if you have qu
tions about this. The RootCause GUI itself is an example of mixing Java an
in an application. It is implemented in Java, but has significant portions of it
functionality implemented in C, which is dynamically loaded by Java. To se
the Java/C interaction in a trace, one would:

1. Open a Java Workspace for the Java main class of the application.

2. UseWorkspace->Add Dynamic Module to specify the dynamic C/C++ li-
brary that will be loaded.

3. Click Setup to show the Java classes and dynamically loaded module, an
fine your traces as usual.

Another common scenario is when a C++ application creates another proce
act as its GUI, and communicates with it by sockets. In this case, one crea
separate workspaces for the compiled and Java parts of the application, and
merges the results, as described in “Multiple Application Tracing” on page 1
Selected Topics 10-13

RootCause J2EE Support

des
ll

 JVM
tive

ork-
n the

com-
.

et
sses
rs.

ectory
again

 cre-

ppli-
.

ust

d

RootCause J2EE
Support

RootCause will work with any J2EE-compliant Enterprise Java Application
Server that uses a standard JRE from Sun (version 1.2 or higher). This inclu
Sun iPlanet 6.5 and AS7, BEA WebLogic 5.1, 6.1 and 7, and JBOSS 3. It wi
also work with standalone Web Servers such as TomCat.

RootCause can trace an Application Server that is run as a standalone Java
(using the java executable) or it can trace a JVM that is embedded within a na
executable.

If the Application Server runs as a standalone Java JVM, you can create a w
space just like any other Java application. Make sure RootCause is enabled i
shell or environment you are running the Application Server JVM. Run the
Application Server, and find the Java APP_START event in theTrace Display
window.

Note: you may need to increase the application server’s Java heap size to ac
modate RootCause tracing overhead; check your app server documentation

In theNew Workspace Dialog, there is an option for “J2EE Server Directory”.
Enter the directory where deployable Enterprise Java Bean (EJB) and Servl
classes and jars reside. RootCause will automatically add EJB and Servlet cla
and jars that are specified in any J2EE compliant XML deployment descripto

Once a Java workspace has been created and opened, the J2EE Modules dir
can be changed to another location, or the current directory can be searched
for updated or new J2EE applications. This can be done usingUpdate J2EE Mod-
ules in theWorkspace Menu.

If the Application Server runs embedded within a native executable, you can
ate a workspace for the native executable, and then add thelibjvm library as a
dynamic module. First create a workspace for the executable that runs the A
cation Server as you would for any other. The open the Trace Setup window

An Application Server might run an embedded JVM, but already havelibjvm

library loaded as a dynamic module. If this is the case, thelibjvm library will
show up in the list of loaded libraries in theTrace Setup Dialog.

If libjvm does not appear as a statically-loaded module in Trace Setup, you m
find the server version of thelibjvm library (libjvm.so on Solaris,
libjvm.dll on Windows). Once this module has been found, it can be adde
usingAdd Dynamic Module in theWorkspace Menu.
10-14 Selected Topics

RootCause J2EE Support

te
Once thelibjvm module is shown in the Trace Setup window, you can comple
the J2EE configuration from the main workspace window usingUpdate J2EE
Modules.
Selected Topics 10-15

RootCause Shipped as Part of Your Application

ulta-
lem
t you
ce
t-
m

e

est
ur

o

RootCause Shipped as
Part of Your
Application

RootCause is designed to solve problems from a single occurrence while sim
neously reducing support costs. While you can wait until a user reports a prob
and then use RootCause to debug it, it is an intended use of RootCause tha
include it as part of your application, so your application is always logging tra
data. Whenever a user encounters a problem, they merely send you the Roo
Causecollect file, and the root cause analysis of the problem is performed fro
that file. This greatly simplifies the reporting and debugging of problems. In
some cases, for particularly difficult problems, you may have to send a more
focused trace to the user site to complete the analysis of the problem, but th
RootCause workflow is optimized to do this.

If you plan to include RootCause as part of your shipped application, we sugg
that you contact OC Systems support to enter into a discussion with one of o
technical staff. It is not difficult, but we can discuss various issues with you t
save time and effort.
10-16 Selected Topics

CHAPTER 11 Custom Java Probes
s

cify-

 of a
ry:

sup-
In addition to the built-in traces and actions available in the RootCause GUI,
RootCause also supports inserting arbitrary “probes” into an application. Thi
allows for custom statistics-gathering, or even modifying the flow of the pro-
gram.

The custom probes are themselves written in Java, and are activated by spe
ing them in adeployment descriptor file which is anXML file with the suffix
.xmj.

This chapter describes how one writes these files though a graduated series
examples. The source text for these examples is found on-line in the directo

$APROBE/demo/RootCause/Java/Custom.

A Simple Example Let’s start with a simple example of how to do this, using the same Pi demo
plied with RootCause that was used inChapter 5, "RootCause Demo".

Write the Probe In Java 1. Create a file calledMyFirstProbe.java as shown below.

This probe will print messages whenever a method to which it is applied
gets called.
11-1

A Simple Example

er
import com.ocsystems.aprobe.*;

public class MyFirstProbe extends ProbeMethod
{

public boolean onEntry (Object[] parameters)
{

System.out.println("Hello world (from my probe)!");

 for(int i=parameters.length-1; i>=0; i--)
{

System.out.println(
"Parameter # " + i + " is " + parameters[i]);

}
return true;

}

public Object onExit (Object returnValue)
{

System.out.println("Goodbye world (from my probe)!");
System.out.println("Return value was: " + returnValue);
return returnValue;

}

public void onExit () // no return value
{

System.out.println("Goodbye world (from my probe)!");
}

public void onExceptionExit (Throwable e)
{

System.out.println(
"Goodbye world (from my probe), due to exception:");

System.out.println(e);
}

}

 MyFirstProbe.java

Note that although all this probe does is make some calls to print viaSys-

tem.out.println() , probes may contain arbitrary Java code, to do whatev
you want.

You can create any of your own probes to be applied to methods simply by
extending the classcom.ocsystems.aprobe.ProbeMethod , and overriding
theonEntry() , onExit() andonExceptionExit() methods, as shown
11-2 Custom Java Probes

A Simple Example

 value

ish
uld

-

licitly
above. As you can see, your probe has access to the parameters and return
of the method it is probing.

2. Then compile thisMyFirstProbe.java . You must specify to the java com-
piler where it can find the classes in the packagecom.ocsystems.aprobe .
Do this with the command

javac -classpath $APROBE/lib/aprobe.jar MyFirstProbe.java

This will createMyFirstProbe.class .

3. Copy the .class file into the workspace directory of the workspace you w
to use. Your workspace from the Pi example from previous chapters wo
be an appropriate place.

Write an XMJ File Now that we have written a probe, how do we specify where this probe is to
apply? This is done with anXMJ file, ordeployment descriptor file, as follows.

4. In the workspace directory, create another file, calledMyFirstProbe.xmj ,
with the following contents:

<probe_deployment>
<probe class="MyFirstProbe">

<target value="Pi::main"/>
</probe>

</probe_deployment>

MyFirstProbe.xmj

This indicates that the probe contained in the class MyFirstProbe should be
applied to the methodmain() in target classPi . You could pick any method in
any class that interested you.

Update the Workspace 5. Copy the.xmj and.class files into thePi.aws directory.

The workspace directory is added the the classpath when you run with Root
Cause, so you’re ready to run if you have copied your.class and .xmj files to
the workspace directory.

NOTE: If you put your custom probes in a JAR file, you’ll need to rebuild the
workspace to cause that to be added to the classpath (or you can add it exp
Custom Java Probes 11-3

Applying One Probe to Many Methods

-

the
ing

l

id:
to your ‘java’ command if that’s convenient. To pick up a JAR file in the work
space, you can rebuild the workspace from the command-line with:

rootcause build Pi.aws

If you have the RootCause console open, you can just click theBuild button.

Run With RootCause 6. Run the Pi program under RootCause. You may do this either by pressing
Run button in the RootCause GUI, or by turning RootCause on and runn
the program from the command line as described in"Trace With RootCause"
on page 5-10.

You will see the output from MyFirstProbe asPi.main() is executed.

Applying One Probe to
Many Methods

You may wish to apply a probe to many different methods. There are severa
ways to do this with the .xmj deployment descriptor file, without changing the
Java at all: wildcards, target lists, and using multiple .xmj files.

Wildcards You can use a wildcard string as the target value in your.xmj file to accomplish
this, as shown below:

<probe_deployment>
<probe class="MyFirstProbe">

<target value="*::*"/>
</probe>

</probe_deployment>

WildcardExample.xmj

UsingWildcardExample.xmj as the deployment descriptor file will cause every
method to have MyFirstProbe applied to it.

The class, the method, or both can be a wildcard. All of the following are val

• Probe all methods in all classes, as shown above:

<target value="*::*"/>

• Probe all methods in a given class:

<target value="Classname::*"/>
11-4 Custom Java Probes

Using Method IDs

e, as

ied.
ou’ll
do

r of
rd to
 out-
ch

e-
• Probe all methods named “foo” in any class:

<target value="*::foo"/>

Lists You can define a list of targets, and reference that list as the target of a prob
shown inListExample.xmj below:

<probe_deployment>
<target_list_definition name="ListExampleList">

<list_target value="Pi::calc_pi"/>
<list_target value="Pi::main"/>

</target_list_definition >

<probe class="MyFirstProbe">
<target_list name="ListExampleList"/>

</probe>
</probe_deployment>

ListExample.xmj

This deployment descriptor file shows how to construct a list. This example
would apply MyFirstProbe to two methods,main() andcalc_pi() .

Multiple XMJ Files All .xmj files in the workspace directory are automatically detected and appl
so you could simply make a copy of one file, change the target name, and y
pick up both target methods on the next run. Conversely, any .xmj files you
not wish to use must be removed from the workspace.

Using Method IDs If you ran the introductory example, and applied the single probe to a numbe
different target methods, you may have noticed that the output can be a bit ha
figure out, because all of the methods being probed are producing the same
put. However, there is built-in support to identify different target methods. Ea
one has a uniquemethod ID, and your ProbeMethod knows the ID of the target
method upon which it is acting.

In addition, the classcom.ocsystems.aprobe.SymbolTable contains a vari-
ety of utility functions for manipulating method IDs. The most immediately us
ful such isgetPrintableMethodName() . It converts a method ID to a String
containing the name of the method. The method ID itself is retrieved by the
Custom Java Probes 11-5

Using Method IDs
invoking the probe’s owngetMethodId() method, which is inherited from the
classcom.ocsystems.aprobe.ProbeMethod .

This next probe,Example2.java , usescom.ocsystems.aprobe.SymbolT-

able.getPrintableMethodName() and a probe’s method ID to make very
clear the program flow in the target:

import com.ocsystems.aprobe.*;

public class Example2 extends ProbeMethod
{

private String methodName = "(unknown)";

private void printEvent(String event)
{

System.out.println(
event + " (in method " + methodName + ")");

}

public boolean onEntry (Object[] parameters)
{

methodName =
SymbolTable.getPrintableMethodName(getMethodId());

printEvent("Method Entry");
return true;

}

public Object onExit (Object returnValue)
{

printEvent("Method Exit");
return returnValue;

}

public void onExit () // no return value
{

printEvent("Method Exit");
}

public void onExceptionExit (Throwable e)
{

printEvent("Method Exit via exception");
}

}

Example2.java
11-6 Custom Java Probes

Logging Data from Java

n
in

ysis

stom
This example also shows that your probe class is just another class. You ca
define any of your own fields and methods in it, and use them as you would
any other class, just as we did here withmethodName andprintEvent() .

Logging Data from
Java

So far, we have sent all output from our probes toSystem.out . This mixes up
the probe’s output with the application’s output, and makes post-runtime anal
more difficult. As you’ve seen in earlier chapters, RootCause normallylogs data
at runtime to be examined later. You can use the same mechanism in your cu
probes. This is used most easily through the class
com.ocsystems.aprobe.Logger.

The following probe uses the methodlog() in that class to record information
which will then be displayed when theAPD file is formatted and examined.

import com.ocsystems.aprobe.*;

public class Example3 extends ProbeMethod
{

public boolean onEntry (Object[] parameters)
{

Logger.log("Hello world (from my probe)!");
return true;

}

public Object onExit (Object returnValue)
{

Logger.log("Goodbye world (from my probe)!");
return returnValue;

}

public void onExit () // no return value
{

Logger.log("Goodbye world (from my probe)!");
}

public void onExceptionExit (Throwable e)
{

Logger.log(
"Goodbye world via exception (from my probe)!");

}
}

Example3.java
Custom Java Probes 11-7

The onLine() Method

xit
 of a
The onLine() Method The probes that we have seen so far perform actions only on entry to, and e
from, the target methods. It is also possible to probe individual source lines
methodif it has been compiled with debugging information(usually using “javac
-g”). This is done using the methodonLine() , as shown inExample4.java

below.

import com.ocsystems.aprobe.*;

public class Example4 extends ProbeMethod
{

private String methodName = "(unknown)";

private void printEvent(String event)
{

System.out.println(
event + " (in method " + methodName + ")");

}

public void onLine (int lineNumber)
{

printEvent("Line # " + lineNumber);
}

public boolean onEntry (Object[] parameters)
{

methodName =
SymbolTable.getPrintableMethodName(getMethodId());

printEvent("Method Entry");
return true;

}

public Object onExit (Object returnValue)
{

printEvent("Method Exit");
return returnValue;

}

public void onExit ()
{

printEvent("Method Exit");
}

public void onExceptionExit (Throwable e)
{

printEvent("Method Exit via exception");
}

11-8 Custom Java Probes

The onLine() Method

his

r
file,
}

Example4.java

Enabling Line Probes If not applied selectively, line probes can seriously impact performance. For t
reason, line probing is turnedoff by default.

Thus, in order for theonLine() method to be called, you must specify that you
probe needs to access lines. This is done in the deployment descriptor (.xmj)
using the attribute “lines” in the <probe> tag, as shown inExample4.xmj below.
Valid values for the “lines” attribute are “TRUE” or “FALSE”. If you do not
specify a value, “FALSE” is assumed.

<probe_deployment>
 <probe class="Example4" lines="TRUE">
 <target value="Pi::main"/>
 </probe>
</probe_deployment>

Example4.xmj
Custom Java Probes 11-9

Advanced Custom Java

htfor-
w

e
crip-

od
s a

te
 be
re-

It is
er

ized
rn
, and

tead

lass
ong

ated
.

Advanced Custom
Java

So far, all the examples have been, in certain ways, pretty simple and straig
ward. Each probe is independent. Each applies to certain methods, and a ne
probe instance is created every time one of those methods is invoked. You’v
simply specified the name of the probe, and its targets, in the deployment des
tor, and RootCause did the rest automatically.

Under the covers, however, what’s going on is quite intricate. For each meth
being probed, there exists what we call a “trigger”, which, essentially, works a
“factory” for probes. When the method is invoked, this trigger gets, well, trig-
gered, and then, by default, creates an instance of the appropriate probe.

This structure allows enormously powerful customizations. Triggers can crea
probes only conditionally. Triggers can be enabled or disabled. Triggers can
removed entirely from association with a method, and new triggers can be c
ated dynamically.

ProbeBeans How does one use this power? With a “ProbeBean”. What is a “ProbeBean”?
a class, derived from com.ocsystems.aprobe.ProbeBean, that groups togeth
related code, data, triggers, and probes. ProbeBeans are created and initial
when the Java application first starts (while RootCause is on), and they in tu
create the triggers that create the probes. Every probe is created by a trigger
every trigger belongs to a particular ProbeBean.

There are a couple of places where you would want to use a “ProbeBean” ins
of the simpler method described earlier:

• you can collect data on a per-thread basis; and

• sophisticated probes can be structured more easily, e.g., the number of c
files can be reduced for the probes and data can be more easily shared am
probes.

In the examples we’ve seen so far, an automatically-created ProbeBean cre
triggers to invoke the probes you specified in your deployment descriptor file
The filesMyFirstProbeBean.java andMyFirstProbeBean.xmj below show how
you would manually create and deploy a ProbeBean forMyFirstProbe.java,
shown at the start of this chapter.
11-10 Custom Java Probes

Advanced Custom Java

r
d to
t

<probe_deployment>
<bean class="MyFirstProbeBean">

<instrument_target>
<target value="Pi::main"/>

</instrument_target>
</bean>

</probe_deployment>

MyFirstProbeBean.xmj

In MyFirstProbeBean.xmj we use the tag <bean>, and the attribute “class” to
specify which class is the ProbeBean to load. The<target> tag looks familiar,
but what is<instrument_target> ? Since the deployment descriptor no longe
directly causes the creation of probes, we don’t know which classes we nee
add “hooks” to. The<instrument_target> tag indicates that RootCause mus
add its hooks to the targets (or target lists) specified.

Note that<instrument_target> doesnot create any triggers or probes, the
way a<probe> tag does. The creation of triggers and probes is left up to the
ProbeBean itself, as shown inMyFirstProbeBean.java below.

The tag<instrument_target> also accepts the attribute “lines” just as
“probe” does, so that line probes may be added.

import com.ocsystems.aprobe.*;
public class MyFirstProbeBean extends ProbeBean
{

public void onEntry ()
{

int targetID = getTarget();

new ProbeTargetTrigger(targetID)
{

public Probe createProbe()
{

return new MyFirstProbe();
};

};
}

Custom Java Probes 11-11

Advanced Custom Java

 of

t can

ew
urn
obe-

the

atly
ve
 You
ean
}

MyFirstProbeBean.java

Let’s look more closely at MyFirstProbeBean, which is as simple as it gets.
When the deployment descriptor is read, RootCause will create an instance
any ProbeBean specified with the<bean> tag, and invoke itsonEntry()

method. The ProbeBean needs to know what methods to apply itself to, so i
create the appropriate triggers. This is done with the methodgetTarget() ,
which returns an ID corresponding the group of methods specified within an
<instrument_target> tag in the .xmj file. The ProbeBean then creates a n
trigger, derived from ProbeTargetTrigger and applied to that target, which in t
creates probes of the class MyFirstProbe. The fact that our new trigger is a Pr
TargetTrigger causes it to automatically apply itself to all the methods repre-
sented by the target ID, and itscreateProbe() method gets invoked whenever
any of those methods does.

That’s probably more than you wanted to know, but this allows you to explore
power of ProbeBeans further in the next example.

Parameterizing Probes Once you’ve compiled your ProbeBean and Probe Java code, you can still gre
vary their behavior through the deployment descriptor. The obvious way we’
already seen is by changing the target methods to which your probes apply.
can also, however, pass arbitrary other parameters to your Probe or ProbeB
via the deployment descriptor, using the<parameter> tag. This pair of exam-
ples will show how to do that, for a ProbeBean or for a stand-alone Probe.

<probe_deployment>
<bean class="Example6ABean">

<parameter name="ReallyHaveProbes" value="true"/>
<instrument_target>

<target value="Pi::main"/>
</instrument_target>

</bean>
</probe_deployment>

Example6a.xmj
11-12 Custom Java Probes

Advanced Custom Java
As you can see, the<parameter> tag has two attributes, “name” and “value”;
both are required. InExample6ABean.javabelow, we’ll see how the ProbeBean
can reference and use the parameter we’ve defined.
Custom Java Probes 11-13

Advanced Custom Java

o a

ith-
import com.ocsystems.aprobe.*;

public class Example6ABean extends ProbeBean
{

public void onEntry ()
{

String reallyHaveProbesString =
getParameter("ReallyHaveProbes");

boolean reallyHaveProbes =
(Boolean.valueOf(reallyHaveProbesString)

).booleanValue();

if(reallyHaveProbes)
{

int target = getTarget();

new ProbeTargetTrigger(target)
{

public Probe createProbe()
{

return new Example4();
};

};
}
else
{

System.out.println(
"Probes disabled by parameter in deployment!");

}
}

}

Example6ABean.java

The ProbeBean retrieves the value of a parameter, as a String, by name, als
String. This name passed togetParameter() must exactly match the attribute
“name” in the<parameter> tag.

This method of parameterization via the deployment file may also be used w
out ProbeBeans, as shown on the following pages:
11-14 Custom Java Probes

Advanced Custom Java

” tag

trig-
xplic-
at a
eter to

value,
 val-
g as
<probe_deployment>
<probe class="Example6BProbe">
<parameter name="BeVerbose" value="true"/>
<target value="Pi::main"/>
</probe>

</probe_deployment>

Example6b.xmj

The parameter is specified the same way here, but nested within the “probe
rather than the<bean> tag. The mechanism by which a Probe retrieves the
parameter is shown inExample6BProbe.java.

Every probe has a field which references the trigger that created it, and every
ger belongs to a bean. Here, even though we did not create a custom bean e
itly, a default bean was created for us by RootCause. It is through this bean th
probe accesses its parameters. Here, the probe uses the value of the param
decide how much information to display.

Note that although both of these examples used the parameter as a boolean
you are not restricted to that. Parameters could represent names, numerical
ues, etc. You may have multiple parameters for a single bean or probe, as lon
each parameter has a unique name.
Custom Java Probes 11-15

Advanced Custom Java
import com.ocsystems.aprobe.*;

public class Example6BProbe extends ProbeMethod
{

boolean beVerbose;

public boolean onEntry (Object[] parameters)
 {

System.out.println("Entering a method.");

String beVerboseString =
trigger.bean.getParameter("BeVerbose");

beVerbose =
(Boolean.valueOf(beVerboseString)
).booleanValue();

if(beVerbose)
{

for(int i=parameters.length-1; i>=0; i--)
{

System.out.println(
"Parameter # " + i + " is " + parameters[i]);

}
}

return true;
}

public Object onExit (Object returnValue)
{

System.out.println("Exiting a method.");

if(beVerbose)
{

System.out.println(
"Method’s return value is: " + returnValue);

}

return returnValue;
}

// exercise for reader:
// provide other onExit, onExceptionExit methods

}

Example6BProbe.java
11-16 Custom Java Probes

Advanced Custom Java

u
text
 get
 cre-
trig-

sis.

new
s.

Pi
Working with Threads In addition to methods, RootCause can also track threads. In fact, unless yo
specify otherwise, all your method probes are actually created within the con
of a default thread probe! But you can also create your own thread probes to
more information about your multi-threaded applications. Thread probes are
ated by a thread trigger every time the JVM creates a new thread. The thread
ger is typically created via a ProbeBean.

You can use thread probes in order to keep track of data on a per-thread ba
Like method probes, thread probes have anonEntry() method. All thread
probes derive from the classcom.ocsystems.aprobe.ProbeThread .

A thread probe is created by a ProbeThreadTrigger. Our ProbeBean creates a
such ProbeThreadTrigger that will create instances of our ProbeThread clas

Example7Bean.java, on the next page, tracks the beginning of all threads, and
counts calls to methods within each of those threads. TheExample7.xmj
deployment description file applies this thread tracking to all methods in the
class.

<probe_deployment>
<bean class="Example7Bean">

<instrument_target>
<target value="Pi::*"/>

</instrument_target>
</bean>

</probe_deployment>

Example7.xmj
Custom Java Probes 11-17

Advanced Custom Java
import com.ocsystems.aprobe.*;

public class Example7Bean extends ProbeBean
{
 int target;

static int numberOfThreads = 0;

class Example7ThreadProbe extends ProbeThread
 {

int threadNumber;
int callsInThisThread;

class Example7MethodProbe extends ProbeMethod
{

public boolean onEntry(Object[] p)
{

callsInThisThread++;
System.out.println(

"Call # " + callsInThisThread +
" in thread # " + threadNumber);

return true;
}

}

public void onEntry () // thread entry
{

threadNumber = ++numberOfThreads;
System.out.println(

"Hello from start of thread # " + threadNumber);

new ProbeTargetTrigger(target, this)
{

public Probe createProbe()
{

return new Example7MethodProbe();
}

};
}

} // end ProbeThread
11-18 Custom Java Probes

Advanced Custom Java

er
 it.

di-
, or
public void onEntry () // bean entry
 {

target = getTarget();

new ProbeThreadTrigger()
{

public Probe createProbe()
{

return new Example7ThreadProbe();
}

};
}

}

Example7Bean.java

Dynamic Probe
Deactivation

Triggers include the ability to be activated and deactivated dynamically.
Example8.java on the next page shows a probe that will only be called once p
thread, because the first time it is invoked, it disables the trigger that created

Of course, you don’t have to restrict your logic to turning the trigger off imme
ately. You could set whatever conditions you like, such as after 100 iterations
when a buffer fills up.
Custom Java Probes 11-19

Advanced Custom Java
import com.ocsystems.aprobe.*;

class MyMethodProbe extends ProbeMethod
{

public boolean onEntry (Object[] p)
{

System.out.println(
"You should only see this once per thread!");

getTrigger().disableProbe();
return true;

}
}

public class Example8 extends ProbeBean
{

public void onEntry() // bean entry
{

int target = getTarget();
new ProbeTargetTrigger(target)
{

public Probe createProbe()
{

return new MyMethodProbe();
};

};
}

}

Example8.java
11-20 Custom Java Probes

Index
A
actions, 3-9, 8-24
add dynamic module, 8-5
Add From Data Files To Display, 8-36
Add From Index To Display, 8-36
Add Process, 8-30
Add Process Data, 8-34
Add Process Data Dialog, 8-30
Add Selected Process Data, 8-36, 10-9
Add UAL , 8-7
Add Ual Dialog, 8-11
Additional Aprobe Options, 8-15
ADI file , 3-9
agent, 3-9

RootCause, 2-1, 2-7
agent license, 6-3
agent_license.dat, 6-3
AIX , 2-2, 4-4, 5-10, 7-8, 8-47
apaudit, 4-4
APC, 3-9
APD file, 3-3

name, 8-14
number, 8-14
size, 8-14

APD ring, 3-3, 3-9, 8-14

apformat, 3-3
Apformat Options Tab, 8-15
Apformat Parameters, 8-11, 8-18
APP_START, 5-4, 7-3, 8-36, 8-40
APP_TRACED, 7-3, 8-36, 8-40
application, 3-2, 3-9
Application, in Trace Index, 8-32
Apply button , 8-26
APROBE, 7-5
aprobe, 7-8

-d option, 8-14
-k option, 8-14
-n option, 8-14
-qstack_size option, 8-15
-s option, 8-14
secure, 10-6
-t option, 8-14

Aprobe Options Tab, 8-14
Aprobe Parameters, 8-11, 8-17
aprobe.jar, 11-3
APROBE_HOME , 2-8, 7-4, 7-5
APROBE_JAVA_HEAPSIZE , 7-5
APROBE_JRE, 7-5, 8-47
APROBE_LOG, 2-8, 4-2, 7-6
APROBE_MONOSPACED_FONT, 8-48
APROBE_REGISTRY, 2-8, 4-2, 7-3
Index-1

Index
APROBE_SEARCH_PATH, 7-6
APROBE_WM_WORKAROUND , 8-48
Autoload Output, 8-19
.aws directory, 3-13

B
background color, 8-49
bash, 9-2
blue dots, 8-22
Build , 5-14
Build Options Tab, 8-14
Build, after Save As, 8-4
Build, in Setup menu, 8-7
build, rootcause subcommand, 9-4
buttons, arrow, 8-39

C
Call Stack Pane, 8-42
call tree, 5-13
CALL_FROM , 8-40
capacity options, 8-15
CD-ROM , 2-5
Change, 8-34, 8-35
.class file, 8-29, 11-3
Class Path, 8-22

setting, 8-16
.clct file, 3-10, 6-4, 7-2, 9-5
<clinit> method, 8-22
clipboard, 8-6, 8-49
collect

definition, 3-9
file, 7-2
rootcause subcommand, 9-5

Collect File, 8-21
color, background, 8-49
com, in Java package, 8-22, 8-23
com.ocsystems.aprobe Java package, 11-3
com.ocsystems.aprobe.Logger, 11-7
com.ocsystems.aprobe.ProbeMethod, 11-6
com.ocsystems.aprobe.ProbeThread, 11-17
com.ocsystems.aprobe.SymbolTable, 11-5
COMMENT , 8-25, 8-41
comment, logging, 8-25
compatibility , 2-6
Consider Case, 8-27, 8-35
constructor, 8-22
Copy UAL, 8-11

copy/paste, 8-49
csh, 9-2
custom Java probes, 11-1
cut/paste, 8-6

D
Data File, 7-2
Data File Size, 8-12
Data Files Pane, 8-42
Data node in Workspace Tree, 8-3
data, preserving, 3-6
.dclct directory, 3-10, 6-4
decollect, 3-10, 9-16
Decollect Dialog, 8-21
decollection, 3-10, 7-2, 9-5
Delete Dynamic Module, 8-6
deploy, 1-2, 2-7, 3-2, 3-10, 9-8
Deploy Dialog, 6-2, 8-19
deployed workspace, 8-14
deployment descriptor file, 3-10, 7-2
Dereference Pointers, 8-27
Deselect Function In Trace Setup, 8-37
Disable Load Shedding for This Item, 8-23
disable tracing, 3-7, 8-25
Display N data files after selected, 8-14
Display N data files before selected, 8-13
Don't Trace All In , 8-23
Don't Trace This Item, 8-22
Don't Trace Wildcards, 8-28
Don’t Load Shed Selected Functions, 8-45
Don’t Prompt for Source Files, 8-15
Don’t Trace All Lines In Function , 8-23
Don’t Trace Selected Functions, 8-45
.dply file, 3-10, 6-2, 6-3, 9-18
DTD, for XMJ file , 7-2
dynamic module, 8-2, 8-5
dynamically loaded library, 3-10, 8-5

E
Edit Class Path Dialog, 8-16, 8-22
Edit Source Path Dialog, 8-16
Edit UAL , 8-7
Edit Wildcard Strings Dialog, 8-28
Enable Load Shedding for This Item, 8-23
Enable Tracing, 8-25
END_DISPLAYED_DATA , 8-40
ENTER, 5-13, 8-40
Index-2

Index
environment variables, 7-1
AP_ROOTCAUSE_ENABLED, 7-8
APROBE, 7-5
APROBE_HOME, 7-5
APROBE_JRE, 8-47
APROBE_LOG, 2-8, 7-5
APROBE_MONOSPACED_FONT, 8-48
APROBE_REGISTRY, 2-8
APROBE_SEARCH_PATH, 7-6
APROBE_WM_WORKAROUND, 8-48
LD_AUDIT, 7-6, 7-7
RC_SHORT_WORKSPACE_LOC, 7-8
RC_WORKSPACE_LOC, 7-8, 8-11

errors, ld.so.1, 10-3
event

Exceptions, 8-34
finding in Trace Index, 8-33
kind, 8-40
selecting, 8-33
Snapshots, 8-34
stepping in, 8-38
tree, 5-13

Event Details Pane, 8-42
Event Trace Tree, 3-10, 8-40
events, 8-31
Examine Process Data, 8-8
examples, 11-1
Exceed, X emulator, 8-47
EXCEPTION , 8-41
Exception event, 8-18
Exception Snapshots, 8-18
exceptions

Java, 5-8, 8-3
logging, 8-18
snapshot, 8-18
UAL, 8-2, 8-19

EXCP event kind, 8-33
executable, 3-10
EXIT , 5-13, 8-40

F
FILE event kind , 8-33
Find, 8-35
Find All , 8-35
Find Button, 8-40
Find Class In Trace Setup, 8-37
Find Function In Trace Events, 8-38
Find Function In Trace Setup, 8-37

Find Function/Method, 8-23
Find In Index , 8-33
Find In Program Contents Dialog, 8-26
Find Source, 8-37
Find Source File, 8-24
Find Text In Events Dialog, 8-35
Find Text in Trace Events, 8-38
Find Text in Trace Events Dialog, 8-43
FLEXlm , 2-9
flight recorder, 6-2
format , 3-10
ftp , 6-3, 6-4

G
gcc, 2-4
gethrtime, 8-25
gethrvtime, 8-25
getMethodId(), 11-6
getPrintableMethodName(), 11-5, 11-6
Global Trace Options Dialog, 8-27
Glossary, 3-9
Goto File, 8-27

H
heap, Java, 7-5, 7-6

I
Index Process Data, 8-8
<init> method, 8-22
install_rootcause, 9-2

J
J2EE, 8-6, 8-10, 10-14
JAR, 8-22
.jar file , 8-29
JAR file in workspace, 11-3
Java, 2-4
$java$, 8-22
Java Exceptions Configuration Dialog, 8-18
Java Path Dialog, 8-17
Java probes, 7-2
Java version, 8-47
java version, 5-2
JAVA_CLASS_LOAD , 8-41
Index-3

Index
JAVA_CLASS_LOADS, 8-41
java_exceptions UAL, 5-8, 8-3
JAVA_LOAD_SHED , 4-3, 8-41
JNI , 8-5
JRE, 3-11, 5-2, 8-17, 8-47, 8-49
JVM , 8-15

K
Keep logged data for N previous processes, 8-12
Kind, in Trace Index, 8-33
Korn shell, 2-3
ksh, 2-3, 9-2

L
Last Data Recorded, 8-31, 8-33
ld.so.1 error message, 10-3
LD_AUDIT , 10-5, 10-7
LD_AUDIT environment variable , 7-6, 7-7
LD_PRELOAD , 10-5
libapaudit.so, 10-3
library, dynamically loaded, 3-10, 8-5
license, 2-8, 6-3
LINE , 8-41
Line Number, 8-27
Linux , 2-3, 2-5, 7-7
load shedding, 3-7
LOAD_SHED Table, 8-44, 8-45
local, 2-1, 2-7, 3-11
local disk, 3-2
log, 3-2, 3-11

from Java, 11-7
Log Comment, 8-25
Log Java Class Loads, 8-27
Log Parameters checkbox, 5-16
Log Snapshot, 5-17, 8-25, 8-34
Log Statistic, 8-25
Log Traceback, 8-25
log(), 11-7
log_env, 8-2, 8-42
Logging Exceptions, 8-18

M
main class name, 8-15
Maximum Logged String Length, 8-28
Maximum number of events in Trace Display, 8-13

Maximum number of items in Trace Index, 8-13
method ID, 11-5
method names, 8-29
module, 3-11, 5-8

dynamically loaded, 8-5
multi-program applications, 10-13
mwm, 8-47

N
Name of UAL, 8-11
names, for tracing, 8-29
New Class Dialog, 8-29, 8-37
New Workspace Dialog, 8-4, 8-9

O
onEntry, Java method, 11-2
onExceptionExit, Java method, 11-2
onExit, Java method, 11-2
onLine(), Java method, 11-8
Open Associated Workspace, 4-3, 8-36
open, rootcause subcommand, 9-15
Options button, 8-26
Options, in Setup menu, 8-7
overhead, 3-7

P
package, Java, 8-22, 8-23
parameters, logging, 8-24
PATH , 4-2
PDF, 2-2
performance, 3-2, 11-9
Pi class, 5-16
PID, 3-9, 3-11
Plug-in Class, 8-11
plug-in for UALs , 8-17
pointers, logging, 8-27
popup menu, 8-41

Table Dialog, 8-43, 8-44, 8-45
Trace Setup Dialog, 8-22
Workspace Tree, 8-2

predefined UAL, 3-11, 8-2
exceptions, 8-2
java_exceptions, 8-3
log_env, 8-2, 8-42
sigsegv, 8-3
Index-4

Index
predefined UAL (continued)
user-defined, 8-2
verify, 6-4, 8-3

preferences file, 7-4
preserving data, 3-6
Probe Action, 8-25
probe deployment descriptor, 8-26
probe names, 8-29
Probe Trigger, 8-24
ProbeBean, 11-10
ProbeMethod, 11-5
probes, 3-2, 3-11
Probes Pane, 5-17, 8-24
ProbeThreadTrigger, 11-17
PROCESS, 8-40
PROCESS DATA, 8-3
Process Data Set, 3-5, 8-3, 8-31
Process Statistics, 8-25
Process, in Trace Index, 8-32
program, 3-2, 3-12

changed, 8-5
node in Workspace Tree, 8-2
run, 8-8

Program Contents Tree, 5-8, 8-21
Program Information Pane, 8-42
PROGRAM_COMMENT , 8-41

R
rclog, 7-5
red dot, 8-23
Reflection, X emulator, 8-47
Refresh, 8-36
Refresh Index, 8-33
register, 3-12, 5-6, 8-5

rootcause subcommand, 9-17
Register Program, 8-5
registry, 3-12, 9-17
Release Notes, 1-3
remote, 2-1, 2-7, 3-12

computer, 9-5
workspace, 8-14

Remove Probes For All Child Items, 8-23
Remove UAL, 8-7
Requires Trace UAL, 8-11
Reset Dynamic Module, 8-5
Reset Program, 8-5
Reset Program Dialog, 8-10
Root Java Module, 8-22

RootCause
Agent, 3-2, 9-5, 9-17, 9-18
Console, 3-2
starting, 9-15

RootCause agent, 2-1, 2-7
rootcause commands, 9-3

build, 9-4, 11-4
collect, 6-3, 7-2, 9-5
config, 9-6
decollect, 9-7
deploy, 9-8
log, 9-11
merge, 9-12
new, 9-13
off, 9-14
on, 6-3, 9-14
open, 4-2, 9-15
register, 7-3, 9-17
run, 4-4, 9-19
status, 9-19
xrun, 9-19

RootCause Console, 2-1
rootcause format, 3-10
RootCause Log, 3-11, 4-2, 8-4, 9-5

decollected, 6-4
size, 9-11

RootCause Main Window, 5-7
RootCause Options Dialog, 8-12
RootCause Registry, 9-5
rootcause.properties, 8-49
rootcause_disable, 9-2
rootcause_enable, 9-2
rootcause_libpath, 10-4, 10-8
rootcause_off, 4-2, 7-6, 7-7, 7-8, 9-2
rootcause_on, 4-2, 5-10, 7-3, 7-6, 7-7, 7-8, 9-2
ROOTCAUSE_SNAPSHOT, 8-26
rootcause_status, 9-2
Run Options Tab, 8-15
Run Program Dialog, 8-19
run under RootCause, 3-12
run_with_apaudit , 4-4, 7-8
rusage, 8-25

S
saprobe, 10-6
Save As Text, 8-37, 10-9
Save As XML, 8-37, 10-9
Save As, workspace, 8-4
Index-5

Index
Search All Modules, 8-27
search path, 7-6
secure aprobe, 10-6
secure_applications file, 10-6
Select Data Files, 8-33
Select Data Files Dialog, 8-34
Select Events, 8-33
Select Events Dialog, 8-34
Setup Menu, 8-6
setup script, 4-2
sh, 9-2
shadow header file, 3-12
shadow header files, 10-11
shared library, 3-12, 8-5
shell, Unix, 9-2
sigsegv, predefined UAL, 8-3
size of RootCause Log, 9-11
SNAP event kind, 8-33
snapshot, 3-4, 3-6, 8-18

probe, 8-25
Solaris, 2-3, 2-5, 7-6, 8-47
Solaris version, 8-6, 8-47, 8-49
sort, table column, 8-32
source files, finding,7-6, 8-7, 8-16
Source Options Tab, 8-15
Source Pane

Trace Display, 8-42
Trace Setup, 8-24

Source Path, setting, 8-16
START_DISPLAYED_DATA , 8-40
START_OF_TRACE, 8-41
starting the GUI, 9-15
statistics, logging, 8-25
Step Into Backwards, 8-39
Step Into Forward, 8-38
Step Menu, 8-38
Step Next Backward, 8-38
Step Next Forward, 8-38
Step Out Backwards, 8-39
Step Out Forward, 8-39
Step Over Backwards, 8-39
Step Over Forward, 8-39
Stepping Toolbar, 8-39
stepping, in trace events, 8-38
strings, logging, 8-28
stripped, 3-12
SYN_CALL_COUNTS, 8-41
SYN_JAVA_CALL_COUNTS , 4-3, 5-13, 5-14, 8-41,

8-43

T
table, 8-43

CALL_COUNTS, 8-41, 8-43
JAVA_CLASS_LOADS, 8-41, 8-44
LOAD_SHED, 8-44
Show Associated, 8-38
sorting, 8-32, 8-45
Trace Index, 8-31

Table Dialog, 8-43
target method ID, 11-5
TEXT , 7-3, 8-41
text, save as, 8-37
Thread, in Trace Index, 8-33
THREAD_END , 8-40
THREAD_START , 8-40
threads, Java, 11-17
threads, view events by, 8-38, 8-40
Time, in Trace Index, 8-32
time, logging, 8-25
time, view events by, 8-38, 8-40
Total logged data limit per process, 8-13
Trace All In , 8-22, 8-23
Trace All Lines In Function, 8-23
Trace Data Dialog, 8-30
Trace Data Files, 8-30
Trace Display, 8-35
Trace Index Dialog, 3-10, 8-25, 8-31
Trace Setup Dialog, 4-3, 5-8, 5-13, 8-21

colored dots in, 8-22
Popup Menu, 8-22
Probes Pane, 8-24
Program Contents Tree, 8-21
Source Pane, 8-24
Variables Pane, 8-24

Trace This Item, 8-22
trace UAL, 8-2
Trace Wildcards, 8-28
TRACEBACK , 8-41
traceback, 8-3, 8-42

logging, 8-25
overhead of, 8-25

tracing, 3-13
disabling, 3-7, 8-25

tree
event trace, 8-40
program contents, 8-21
Workspace, 8-1

trigger, 3-13, 8-24
tuning a trace, 5-13
Index-6

Index
U
UAL , 3-13, 8-2

node in Workspace Tree, 8-2
predefined, 8-2

UAL Description, 8-11
UAL File , 8-11, 8-17
UAL Name, 8-17
UAL Options Dialog, 8-17
Unregister Program, 8-5
Update, 8-34, 8-35

V
Variables Pane, 8-24
verify UAL , 6-4, 8-3
version compatibility, 2-6
View Menu, 8-38

W
white papers, 1-3
wildcard

in Trace Setup, 8-29
in XMJ file, 11-4

Workspace
Browser, 8-1
Edit Menu, 8-6
Execute Menu, 8-7
Help Menu, 8-8
Message Pane, 8-3
Toolbar, 8-8
Tree, 8-1
Workspace Menu, 8-3

workspace, 3-2, 3-13, 5-5, 9-13
JAR file in, 11-3
location, 7-8
rebuilding, 11-4

Workspace Tree, 8-1
Data, 8-3
Popup Menu, 8-2
Program, 8-2
UALs, 8-2

Wraparound data logging wraps at N, 8-13

X
X windows, 8-47
.xmj file, 3-10
XMJ file , 7-2, 11-3
XML , 3-13

Save As, 8-37
XWindows emulators, 8-47
Index-7

	Notice
	CHAPTER 1 Introducing RootCause
	What Is RootCause?
	Java, C++, or Both?
	About This Guide

	CHAPTER 2 Installing RootCause
	Getting Help
	On-line Documentation
	System Requirements
	Reading the CD
	Installing From A Compressed Tar File
	Preparing to Install
	RootCause Console Installation
	RootCause Agent Installation
	Uninstalling RootCause
	Licensing

	CHAPTER 3 Terminology and Concepts
	The RootCause Product
	The RootCause Registry
	The RootCause Log
	Aprobe Product
	RootCause Data Management
	RootCause Overhead Management
	Glossary

	CHAPTER 4 Getting Started
	The Setup Script
	The RootCause Process
	Enabling RootCause for an AIX Application

	CHAPTER 5 RootCause Demo
	Set Up
	Run With RootCause
	View the RootCause Log
	Create a RootCause Workspace
	Define the Trace
	Trace With RootCause
	View The Data Index
	Examine and Revise the Trace
	Tracing The Details
	Where To From Here?

	CHAPTER 6 Deploying the RootCause Workspace
	Installing The RootCause Agent
	Building a “Traceable” Application
	Deploying A RootCause Workspace
	Registering a Deployed Workspace
	Collecting Data At The Remote Site
	Formatting and Viewing the Remotely- Collected Data

	CHAPTER 7 RootCause Files and Environment Variables
	Workspace
	UAL File
	XMJ File
	Data (APD) File
	Process Data Set
	Deploy File
	Collect File
	Decollection
	RootCause Registry
	RootCause Log
	.rootcause Directory
	rootcause.properties
	setup Script
	Environment Variables

	CHAPTER 8 RootCause GUI Reference
	Workspace Browser
	New Workspace Dialog
	Reset Program Dialog
	Add UAL Dialog
	RootCause Options Dialog
	Edit Source Path Dialog
	Edit Class Path Dialog
	Java Path Dialog
	UAL Options Dialog
	Java Exceptions Configuration Dialog
	Run Program Dialog
	Deploy Dialog
	Decollect Data Dialog
	Trace Setup Dialog
	Find In Program Contents Dialog
	Global Trace Options Dialog
	Edit Wildcard Strings Dialog
	Generate Custom XMJ Dialog
	New Class Dialog
	Trace Data Dialog
	Add Process Data Dialog
	Trace Index Dialog
	Select Data Files Dialog
	Select Events Dialog
	Find Text In Events Dialog
	Trace Display
	Find Text in Trace Events Dialog
	Table Dialog
	Platform-Specific GUI Issues

	CHAPTER 9 RootCause Command Reference
	RootCause and Different Shells
	rootcause
	rootcause build
	rootcause collect
	rootcause config
	rootcause decollect
	rootcause deploy
	rootcause format
	rootcause log
	rootcause merge
	rootcause new
	rootcause_off
	rootcause_on
	rootcause open
	rootcause register
	rootcause run
	rootcause xrun
	rootcause status

	CHAPTER 10 Selected Topics
	RootCause and Efficiency Concerns
	Solaris SETUID, and Security Concerns
	64 bit applications
	Logging Controls
	Multiple Application Tracing
	Multiple Executions of a Single Application
	Libraries with No Debug Information
	Your Application and Different JREs
	Using RootCause on an Application with an Embedded JVM
	Tracing Java and C++ In One Program
	RootCause J2EE Support
	RootCause Shipped as Part of Your Application

	CHAPTER 11 Custom Java Probes
	A Simple Example
	Applying One Probe to Many Methods
	Using Method IDs
	Logging Data from Java
	The onLine() Method
	Advanced Custom Java

