Version 2 for Java
on Unix

OTGAUSE

April 8, 2003

POWERED BY APROBE

O SYSTEMS

9990 Lee Highway, Suite 270
Fairfax, Virginia 22030
http://www.ocsystems.com

Notice

OC Systems retains all ownership rights to the programs and documentation that make up RootCause®. Use |
RootCause is governed by the license agreement accompanying your original media.

Only you and your employees and consultants who have agreed to the above restrictions and those of the acco
panying license may use RootCause.

You may not defeat or circumvent the license protection features built into the programs, if any.

Your right to copy RootCause and this manual is limited by copyright law. Making copies, adaptations or compi-
lation works (except copies of RootCause for archival purposes or as a necessary part of using the programs)
without prior written consent of OC Systems is prohibited.

OC Systems provides this publication “as is” without warranty of any kind, either express or implied.
Copyrightd 2003 OC Systems Inc. All rights reserved.

Aprobe and RootCause are registered trademarks of OC Systems.

The trade names Ultra, Solaris, and WorkShop are property of Sun Microsystems, Inc. IBM and AlX are registed
trademarks of International Business Machines Corporation. Other trademarks are property of their respective

owners.

The RootCause development team includes Vince Castellano, Oliver Cole, lvan Cvar, Dick Efron, Tom Fleck,
Vasya Gorshkov, Kevin Heatwole, Paul Kohlbrenner, Steve North, Andy Platt, and Larry Preston.

Contents

CHAPTER 1 Introducing RootCause
What Is RootCause? 1-1
Java, C++, or Both? 1-2
About This Guide 1-2

CHAPTER 2 Installing RootCause
Getting Help 2-1
On-line Documentation 2-2
System Requirements 2-2
Reading the CD 2-5
Installing From A Compressed Tar File 2-5
Preparing to Install 2-6
RootCause Console Installation 2-7
RootCause Agent Installation 2-7
Uninstalling RootCause 2-8
Licensing 2-8

CHAPTER 3 Terminology and Concepts
The RootCause Product 3-2
The RootCause Registry 3-3
The RootCause Log 3-3
Aprobe Product 3-3
RootCause Data Management 3-4
RootCause Overhead Management 3-7

Glossary 3-9

CHAPTER 4 Getting Started

The Setup Script 4-1
The RootCause Process 4-2
Enabling RootCause for an AlIX Apgation 4-4
CHAPTER 5 RootCause Demo
Set Up 5-2
Run With RootCause 5-3
View the RootCause Log 5-4
Create a RootCause Workspace 5-6
Define the Trace 5-8
Trace With RootCause 5-10
View The Data Index 5-11
Examine and Revise the Trace 5-13
Tracing The Details 5-16
Where To From Here? 5-20
CHAPTER 6 Deploying the RootCause Workspace
Installing The RootCause Agent 6-1
Building a “Traceable” Application 6-2
Deploying A RootCause Workspace 6-2
Registering a Deployed Workspace 6-3
Collecting Data At The Remote Site 6-3

Formatting and Viewing the Remotely-Collected Data 6-4

CHAPTER 7 RootCause Files and Environment Variables
Workspace 7-1
UAL File 7-1
XMJ File 7-2
Data (APD) File 7-2
Process Data Set 7-2
Deploy File 7-2
Collect File 7-2
Decollection 7-2
RootCause Registry 7-2
RootCause Log 7-3
.rootcause Directory 7-4
rootcause.properties 7-4
setup Script 7-4
Environment Variables 7-5

Vi

CHAPTER 8 RootCause GUI Reference

Workspace Browser 8-1

New Workspace Dialog 8-9

Reset Program Dialog 8-10
Add UAL Dialog 8-11
RootCause Options Dialog 8-12
Edit Source Path Dialog 8-16
Edit Class Path Dialog 8-16
Java Path Dialog 8-17
UAL Options Dialog 8-17
Java Exceptions Configuration Dialog 8-18
Run Program Dialog 8-19
Deploy Dialog 8-19
Decollect Data Dialog 8-21
Trace Setup Dialog 8-21
Find In Program Contents Dialog 8-26
Global Trace Options Dialog 8-27
Edit Wildcard Strings Dialog 8-28
Generate Custom XMJ Dialog 8-29
New Class Dialog 8-29
Trace Data Dialog 8-30
Add Process Data Dialog 8-30
Trace Index Dialog 8-31
Select Data Files Dialog 8-34
Select Events Dialog 8-34
Find Text In Events Dialog 8-35
Trace Display 8-35
Find Text in Trace Events Dialog 8-43
Table Dialog 8-43
Platform-Specific GUI Issues 8-47

vii

CHAPTER 9

CHAPTER 10

CHAPTER 11

RootCause Command Reference

RootCause and Different Shells
rootcause
rootcause build
rootcause collect
rootcause config
rootcause decollect
rootcause deploy
rootcause format
rootcause log
rootcause merge
rootcause new
rootcause_off
rootcause_on
rootcause open
rootcause register
rootcause run
rootcause xrun
rootcause status

Selected Topics

RootCause and Efficiency Concerns
Solaris SETUID, and Security Concerns
64 bit applications

Logging Controls

Multiple Application Tracing

Multiple Executions of a Single Application
Libraries with No Debug Information

Your Application and Different JREs

9-11
9-12
9-13
9-14
9-14
9-15
9-17
9-19
9-19
9-19

10-1
10-3
10-9
10-9
10-9
10-10
10-11
10-12

Using RootCause on an Application with an Embedded JVM-12

Tracing Java and C++ In One Program
RootCause J2EE Support
RootCause Shipped as Part of Your Application

Custom Java Probes

A Simple Example

Applying One Probe to Many Methods
Using Method IDs

Logging Data from Java

The onLine() Method

Advanced Custom Java

10-13
10-14
10-16

11-1
11-4
11-5
11-7
11-8
11-10

viii

CHAPTER 1

Introducing RootCause

What Is RootCause?

RootCause is a sophisticated tool designed to help software organizations solve a
problem as quickly as possible, ideally from a single occurrence, while simulta-
neously reducing support costs. Fundamental to this is a tracing capability. We
have designed RootCause to make powerful application tracing and root cause
analysis as simple as possible.

The fundamental concept is that all of the data needed to debug an application
problem is recorded in its RootCause workspace. The RootCause Console
Graphical User Interface (GUI) allows you to choose the data to be collected and
to navigate the collected data.

When an application problem occurs, the “user” sends the RootCause workspace
to the support organization as the problem report. If the support organization has
defined the trace correctly, this RootCause workspace contains sufficient infor-
mation to do the root cause analysis of the problem. There's no need to recreate
the problem or ask the user further questions.

The RootCause Console tools are used in the application development and sup-
port environments to define what to trace and also ultimately to view the trace
data. The application being traced may be run in the development environment as
well, of course; or it may be run remotely, on a separate test platform or on a cus-
tomer's computer, without access to the development environment.

1-1

Java, C++, or Both?

Java, C++, or Both?

About This Guide

You can choose to deploy the RootCause trace to the application environment
after a problem occurs, or you can include RootCause as part of your shipped
application so that any time a problem occurs you can immediately examine the
data collected by RootCause to perform a root cause analysis of the problem.

Note that RootCause is designed to work on shipped applications. No change is
needed to your application or your build processes! The traces will be automati-
cally inserted into your application when a copy of it is loaded into memory; the

traces remain only while your application is running, and they vanish afterwards.

RootCause is packagedRsotCause for JavandRootCause for C++This is

the user’s guide for thégavaversion only. You should read the documentation

and do the demos that correspond to the version of RootCause you're interested
in.

The differences in features betweRnotCause for JavandRootCause for C++

are determined solely by the license key(s) you are issued by OC Systems. If this
isn’'t the version you want, or you want to use RootCause on native code libraries
loaded by Java, or Java run as applets or beans from a compiled application, you
will need licenses to enable both the Java and C++ features. For more informa-
tion se€'Licensing” on page 2;&nd"Tracing Java and C++ In One Program"

on page 10-13

This User's Guide describes version 2 of the RootCause product for Java users on
the Unix platform. Your feedback is desired, both on problems that you encoun-
ter and on suggestions of how the product could better accomplish its goals of
solving problems from a single occurrence and of reducing support costs.

Please e-mail feedback to support@ocsystems.com and indicate what version of
RootCause you are using. The version number can be obtained by with the com-
mandrootcause help

If you are evaluating RootCause, or you are a first time user, we suggest that you
install RootCause in a local directory (no special system administrator privileges
are needed) and do the demonstrations outlin€thapter 5, "RootCause

Demo" Then return to this manual to get specific questions answered. If the
information is not clear, let us know.

Chapter 2, "Installing RootCausdiscusses the installation of RootCause.

1-2

Introducing RootCause

About This Guide

Chapter 3, "Terminology and Concepiistroduces some terminology and con-
cepts that RootCause users should know to make best use of the product. This
chapter also containsGlossary

Chapter 4, "Getting Startediiscusses how an individual user would set up to use
RootCause after it is installed and gives a quick description of getting started
with RootCause.

Chapter 5, "RootCause Demdémonstrates how to apply RootCause to a simple
program.

Chapter 6, "Deploying the RootCause Workspapgdlains how to define a
RootCause trace session at your local site and then send it to a remote site to do
remote debugging.

Chapter 7, "RootCause Files and Environment Variallsgusses the environ-
ment variables and files that affect RootCause.

Chapter 8, "RootCause GUI Referendgscribes the RootCause Graphical User
Interface in detail, briefly describing each dialog, menu item, and button.

Chapter 9, "RootCause Command Referenestribes theootcause com-
mand line.

Chapter 10, "Selected Topicstntains technical discussions for issues of inter-
est to RootCause users.

Chapter 11, "Custom Java Probdsscribes how one can write probes for Java,
in Java.

Problems and platform-specific issues are discussed in the Release Notes for the
current release of the product.

Check our web site at www.ocsystems.com for white papers and the newest ver-
sion of the product.

Introducing RootCause 1-3

About This Guide

1-4

Introducing RootCause

CHAPTER 2 Installing RootCause

The RootCause product consists of two major components: the RootCause Con-
sole and the RootCause Agent. The RootCause Console component allows you to
create probes and examine the trace data generated by the probes. The RootCaust
Agent is the component that performs the actual runtime tracing and generates
the trace data.

Every user of RootCause will install the RootCause Console and the RootCause
Agent on a local computer in order to be able to create probes and view probe
data for the local computer as well as remote computers.

The RootCause Agent may then be installed on all remote computers where
RootCause will be deployed (i.e. where remote applications are to be traced by
the RootCause product). Note that you may also install the RootCause Console
component on any and all remote computers if you wish to develop probes and
view their trace data locally on the remote computers.

Getting Help If something is missing, or you need a different media format, or you have any
other installation or configuration problems, please contact OC Systems by inter-
net atsupport@ocsystems.com or by telephone at (703)359-8160.

2-1

On-line Documentation

On-line
Documentation

System Requirements

AIX

After you've installed RootCause, you can use your HTML browser and the Con-
sole’s Help menu to view detailed information about use of the product.

The user guides for both RootCause and Aprobe are available in HTML format at
$APROBE/html/index.html , and on the web at
http://www.ocsystems.com/sup_ug_index.html

The RootCause user guide is available in PDF, in
$APROBE/RootCauseJava.pdf

RootCause interacts very closely with the hardware, the operating system and the
Java Runtime Environment on your machine. This section identifies the specific
requirements in these areas. Read this carefully, and contact OC Systems if you
have questions.

RootCause for Unix is currently supported on the AlX, Linux, and Solaris oper-
ating systems. On each operating system, specific compilers and Java versions
are supported. Details are given below:

AIX Hardware requirements
» a POWER or PowerPC architecture workstation

» Approximately 120 megabytes of disk space for a RootCause Console instal-
lation; about 7 megabytes for the RootCause Agent alone.

« At least 128 megabytes of RAM.
» Addisplay supporting 256 or more colors.

AIX Operating System Requirements

» AlX Version 5.1 or newer is required to run the RootCause Console Java GUI
and any other tools that operate on a RootCanskspace

* The underlying Aprobe command-line facility works on AlX versions 4.2 and
newer.

AIX Compiler Requirements

A C compiler is required to buildon-Javaprobes. This compiler is selected at
installation time and may be one of the following:

* IBM C for AIX (xIc) version 3.1 or newer.

2-2

Installing RootCause

System Requirements

« GCC version 2.8.1 or higher
AIX Java Requirements
Java applications must be run using Java version 1.2 or newer, which generally
requires AlX 5.x. RootCause include Java version 1.3.1 for AlX, configured to
enable use with RootCause as describééirabling RootCause for an AIX
Application" on page 4-4

Linux Linux Hardware requirements

Any modern Intel Pentium-based computer.

Approximately 120 megabytes of disk space for a RootCause Console installa-
tion; about 7 megabytes for the RootCause Agent alone.

At least 128 megabytes of RAM.

A display supporting 256 or more colors.

Linux Operating System Requirements

Red Hat Linux 7.1 or later, with a version 2.4 kernel or later.

Korn shell (fusr/bin/ksh) must be installed in order to install RootCause.
Linux Compiler Requirements

A C compiler is required to buildon-Javaprobes. This compiler is selected at
installation time and may be one of the following:

* GCC version 2.95.x or 2.96.
Linux Java Requirements

Java applications must be run using Java version 1.3 or newer.

Solaris Solaris Hardware requirements
» Sparc & UltraSparc, by Sun Microsystems

Installing RootCause 2-3

System Requirements

» Approximately 140 megabytes of disk space for a RootCause Console instal-
lation; about 7 megabytes for the RootCause Agent alone.

* Atleast 128 megabytes of RAM.
» Adisplay supporting 256 or more colors.

Solaris Operating System Requirements
» Solaris 2.5.1/ SunOS 5.5.1 or higher

* We recommend Solaris 8 or newer since that supports the preferred Java inter-
preter used by the RootCause Console GUI.

» For Solaris version 5.5.1, patch 103627-08 is required. Patches may be down-
loaded from http://sunsolve.sun.com/.

Solaris Compiler Requirements

A C compiler is required to buildon-Javaprobes. This compiler is selected at
installation time and may be one of the following:

* Sun Workshop C version 4.2 or higher; or
* GCC version 2.8.1 or higher
e NOTE: /usr/ucb/bin/cc may not be used.

Solaris Java Requirements

Java applications must be run using Java version 1.2 or newer.

2-4

Installing RootCause

Reading the CD

Reading the CD

AIX

Linux

Solaris

Installing From A
Compressed Tar File

The CD-ROM is mounted as a file system, and once mounted is read just like a
hard disk. Depending on the configuration of your system, you may need root
(superuser) privileges to access or change your CD device. If you don’t have
access to a CD-ROM device, you can request a downloadable versiosdpem
port@ocsystems.com

On AlX, insert the Aprobe CD-ROM into the CD drive. Then, on the system con-
taining the CD drive, mount the CD as a filesystem. If the mount is already
defined (it probably is) then you can just remount it:

$ /etc/mount /cdO

Otherwise you'll have to create a directory and mount it there, which will require
root privileges:

$ mkdir /cdO
$ /etc/mount -r -v cdrfs /dev/cdO /cdO

Linux should automatically mount the CD-ROM when you place it in the drive.
You should see it dtlev/cd

Solaris should automatically mount the CD-ROM when you place it in the drive.
You should see it dtdrom/cdrom . If you have more than one CD drive in your
system you will havécdrom/cdrom0 , /cdrom/cdrom1 , etc. so just pick the
correct one.

If your CD-ROM drive is on a separate machine from where you want to install
you may copy the fileootcause_install_image.tar.Z from the CD to
disk, then ftp that to the desired machine.

Or, you may have downloaded RootCause from OC Systems directly, in a file
such aRRCSol205.tar.Z

In either case, you may perform the following steps:
1. Copythetar.z file where you wish to install it.

2. Execute the command:
uncompress -c rootcause_install_image.tar.Z | tar -xvf -

Installing RootCause 2-5

Preparing to Install

Preparing to Install

This will create a new directory, e.thotcause_install_image/
You may rename this if you prefer a different name.

Follow the instructions below, except that you may install “in place”, by

starting in the top directory (e.g., rootcause_install_image/), and

specifying “.” as the installation directory.

Once you can read the CD-ROM, the next step is to decide where to install its
contents on your hard disk:

1.

Examine the README file on the CD-ROM for updates to the installation
process and the user guide.

Determine where on disk you want to install RootCause.

Choose a new directory which will be visible to all potential users,
and which has sufficient disk space. For the full installation you will
need about 140 Megabytes of space.

You do not need to have root privileges to do the installation unless
you need those privileges to write into the selected directory.

RootCause should not be installed in place of an existing installation
unless it is compatible (the first two digits of the version number
match). Otherwise, existing probes and workspaces will need to be
rebuilt.

Determine whether you're using RootCause for C++ or for Java. If you're
reading this manual, you’re probably using just Java, in which case you will
not need a C compiler and may skip the next step.

Determine which C compiler will be used during the installation.

See “System Requirements” on page 2-2 for a list of suitable com-
pilers. A C compiler is required for building the probes that Root-
Cause will create.

The installation script will prompt you to state or verify the full path
name of the C compiler to be used during installation. This need not
be the same compiler you will use to build your application(s). Rath-
er it will be used just to compile the APC source code that describes
the generated probes.

If a suitable C compiler is in your executable PATH, the install script
will offer it as the default compiler. The GCC compiler will be cho-

2-6

Installing RootCause

RootCause Console Installation

RootCause Console
Installation

RootCause Agent
Installation

sen only if no supported cc compiler is found.

5. Have a RootCause license key ready. If possible, use your mouse to copy the
key from another window on your screen so you can simply paste it at the
prompt during installation.

You can complete the RootCause installation process without a license
key, but you'll have to install the key manually later (see “License Key
Installation” on page 2-9).

You are now ready to run the installation script and reply to its prompts about the
installation directory, C compiler, and license key with the selections made
above.

RootCause is shipped on CD-ROM. You install RootCause by loading the CD-
ROM and running thenstall_rootcause script found on the CD-ROM, for
example:

/cdO/install_rootcause

where /cdO represents the CD-ROM directory described ulitEding the CD"
on page 2-5or else

rootcause_install_image/install_rootcause

as described ifinstalling From A Compressed Tar File" on page 2-5

It will ask you to make a few choices, including the directory location where you
wish to install RootCause. It also asks for the license that was supplied by OC
Systems. If you do not have a license, cordagport@ocsystems.com

If you have problems with installing RootCause, you may want to read further in
this section, otherwise, you are ready to run the “RootCause Demo” on page 5-1.

This section is only applicable if you want to install only the RootCause Agent
component without installing the RootCause Console. This means that you wish
to deploy RootCause to a remote computer, and will be creating probes for the
remote computer and viewing the remotely collected probe data using the Root-
Cause Console component located on a local computer.

Installing RootCause 2-7

Uninstalling RootCause

Uninstalling
RootCause

Licensing

The RootCause Agent installation package is contained in file
deploy/rootcause_agent.tar.Z located on the RootCause CD and also in a
a RootCause Console installation.

To install the RootCause Agent on a remote computer, follow these steps:
1. Transfer file rootcause_agent.tar.Z to the remote computer.

2. Uncompress and un-tar the file, which will create the directory
rootcause_agent:

uncompress -C rootcause_agent.tar.Z | tar -xvf -

3. Run thenstall_rootcause script:
rootcause_agent/install_rootcause

During RootCause Agent installation, you will be prompted for a writable direc-

tory into which the product will be installed. You may choose to install the prod-

uct in place (i.e., under the rootcause_agent directory you just created), or install
it into an entirely different directory. We recommend that you install the product

on a local disk.

Note that you willhot be prompted for a license during installation. When you
create a deployable workspacedgly file) using the RootCause Console, it
should contain an agent license (provided you have purchased one or more from
OC Systems) that allows you to run the RootCause Agent product on remote
computers.

To uninstall RootCause, simply delete the ertkeROBHlirectory. The Root-
Cause installation itself does not write to any other locations.

The~/.rootcause (or~/.rootcause_aix or ~/.rootcause_linux)
directory, and the individual workspacaws) directories, are considered to be
user data, not part of the RootCause installation itself. If you deleté¢ the
.rootcause* directory (or any directory referenced by $#°ROBE_HOME
$APROBE_LO®r $APROBE_REGISTR¥nvironment variables) you must re-run
the "setup" scripts as describeddhapter 4, "Getting Started"

The accompanying license agreement describes the terms under which Root-
Cause may be legally used. OC Systems protects its products from illegitimate
use by implementing license agreement checks in its software.

2-8

Installing RootCause

Licensing

Obtaining License Keys

License Key Installation

Licensed use of RootCause is checked by the software using the FLEXIm licens-
ing system from Globetrotter Software.

RootCause is packagedRsotCause for JavandRootCause for C++This is
the user’s guide for théavaversion only. The differences in features between
RootCause for JavandRootCause for C+4are determined solely by the license
key(s) you are issued by OC Systems.

An demonstration license is generally provided in a cover letter or e-mail mes-
sage included with the software. When you purchase the product, OC Systems
will request additional system-specific information, and send you license keys
generated from this information.

License keys are shipped in either “decimal” or “text” format. The decimal
license string can be supplied by the user when prompted during the RootCause
product installation process (sd#ootCause Console Installatioabove).

Entering an empty license string will postpone the license installation, which will
have to be done manually by editing ##¢°ROBE/licenses/license.dat
file and entering either the decimal or human-readable form of the license key.

For more information on the license key installation and license management
refer to the FLEXIm End-User Manual that can be found in PDF or HTML for-
mat inSAPROBE/licenses or contact OC Systems as describetGntting

Help" on page 2-1

Installing RootCause 2-9

Licensing

2-10 Installing RootCause

CHAPTER 3 Terminology and
Concepts

RootCause® is an extension of the Aprobe® product, a powerful general-pur-
pose patching tool that has been in use for years. As such, much of the terminol-
ogy, organization and documentation of RootCause refer to those of Aprobe.

Here we describe general terminology and concepts that apply to RootCause and
Aprobe, focusing on the RootCause product. A minimal amount of Aprobe docu-
mentation is supplied here, just enough to support the RootCause definitions. For
additional information, see the Aprobe user’s guide (SAPROBE/Aprobe.pdf).

3-1

The RootCause Product

The RootCause
Product

We use the termapplicationandprograminterchangeably throughout the Root-
Cause product. An application or program is represented by a Java main class.

We use the termrobewhen describing what RootCause does: RootCause
“probes” a running application. The probes created by RootCause do things like
tracing, timing, data collection and more. Note that these probes are added only
to the in-memory copy of the running application; RootCause does not modify
the disk-resident application at all.

Each application that is probed by RootCause is assigwedkapaceA work-
space is a directory where RootCause can put all of its important files (including
the data collection files) at runtime.

Each workspace is created and initialized only once, when RootCause is first
invoked on an application. Thereafter, RootCause automatically manipulates the
workspace contents, so users can ignore the workspace during normal use. For
each probed application, there is one workspace; and for each workspace, there is
one application.

We use the terriog as a verb to describe Aprobe's low-overhead data recording
mechanism. RootCause logs its data into files in the workspace. For best perfor-
mance, workspaces should be on a local disk (not remotely mounted).

The RootCause product is invoked by the commaiottause (see Chapter
9, "RootCause Command Refererce"

The RootCause product consists of two major componentRabeCause Con-
soleand theRootCause Agenthe RootCause Console component allows you to
create probes and examine the trace data generated by the probes. The RootCause
Agent is the component that performs the actual runtime tracing and generates
the trace data.

You can choose to install only the RootCause Agent on a remote computer and
then use the RootCause Consotieployoperation to create a workspace for that
remote computer. The deployed workspace can then be transferred to the remote
computer for use by the RootCause Agent there, and the trace data can be trans-
ferred back to the RootCause Console for examination.

3-2

Terminology and Concepts

The RootCause Registry

The RootCause
Reqistry

The RootCause Log

Aprobe Product

The RootCause Agent is enabled on a per-process-group basis via an environ-
ment variable. When rootcause is “on” in your environment, RootCause will
identify and optionally record the creation of every new process and subprocess
created in that shell or subshells inherited from that shell in the RootQagite

the main class for the process is listed in the RootCeaegistry, then RootCause

will insert probes into that process to collect data the next time it is launched
(when you registered the program, you specified the workspace associated with
the main class and that workspace contains the probes). If the main class does not
appear in the registry, then RootCause allows the process to continue undis-
turbed.

The RootCause log is the central reporting place for RootCause. By default,
RootCause records every process that is started while “rootcause_on” is in effect.
RootCause also writes error messages to this file. The default behavior when
starting the RootCause Cons@#ll (with the “rootcause open” command) is to
view this log, from which you may read error messages, open workspaces, and
view trace results.

The log is a fixed size, and wraps around to avoid growing too largeodthe
cause log command manages attributes of this file.

Since RootCause is an extension of the Aprobe product, the setup scripts define
an environment variable, APROBE, which identifies the RootCause installation
directory. $APROBE is used throughout this manual to refer to the installation
directory of the Aprobe and RootCause products. This section introduces some
Aprobe terminology.

As your program executes, tracing data is logged (i.e. written) to an APD
(AProbe Data) file. Almost always, more than one APD file is allocated, and
these files are used in a round-robin fashion (the oldest APD file is always over-
written). This set of APD files is referred to asA#D ring. There is a separate
control file that is used to manage all the files in the APD ring; this control file is
named the APD ring file.

APD files are written in a proprietary binary format. Hpéormat command
reads APD, UAL and program files and generates readable text.

Terminology and Concepts 3-3

RootCause Data Management

RootCause Data
Management

Recording Data Quickly

Tracing an application raises a number of questions about managing the data that
is recorded.

1. How can trace data be recorded quickly?
2. How can the least amount of data be recorded?

3. How can data recorded by multiple instances of the same program be pre-
served and organized?

4. How can the total amount of data recorded by bounded, to keep from filling
up the disk?

5. How can users “snapshot” important data to be kept, while still bounding the
total data collected?

6. How can users find what they’re looking for in the data that is collected?

To address these issues, RootCause provides an interface to the Aprobe “log”
mechanism which provides powerful and flexible data-recording and formatting
capabilities. Here’s how they work.

Aprobe logging uses memory-mapped files to record the data. Each process has
its own set of data files mapped to distinct memory regions, which avoids bottle-
necks and locking problems when several processes are logging data simulta-
neously. Thread-safety is managed primarily using a lock-free compare-and-
swap mechanism, though some locking is still required when switching data files.

However, even though the files are memory mapped, the contents must eventu-
ally be written to disk, and this is limited by I/O speeds to the disk device. For
this reason, it is very important that the workspace directory (where RootCause
writes the data files) be “local” (directly connected to the machine where the
traced program is running) and not accessed across the network (e.g., using
NFS). If you are collecting data from a program running on multiple machines
using the same workspace, or have other special requirements, contact OC Sys-
tems.

3-4

Terminology and Concepts

RootCause Data Management

Recording Less Data

Data for Multiple
Processes

Bounding Total Data

The Aprobe “log” mechanism automatically separates the recording of data from
its display and formatting. For example, timestamps are recorded simply as 64-
bit values at run-time, then formatted as desired later. String literals and labels are
also added as part of formatting. This has the added benefit of being able to for-
mat the same data in multiple ways without rerunning the application.

The data associated with each process is savedimacess Data Sgtor “APD

ring”, a directory identified by thBID of that process. The user specifies how
many of these should be saved, and when that limit is reached, the oldest Process
Data Set is deleted when tracing of a new process is started.

As mentioned above, the user specifies how many processes’ data are to be saved.
In addition, the amount of data saved for each process is also highly configurable.
The data for each process is treated as a multi-file circular buffeARD ring’.

Each file is called anAPD file” because of its suffix, “.apd”. At the Aprobe level

the user may specify the size of each file, the number of files in each ring; and the
number of snapshot files saved. RootCause makes this a bit easier by offering the
following parameters in thRootCause Options Dialog

» Keep logged data for N previous processes

This specifies the number of Process Data Sets to keep, as described
above.

» Data File Sizgbytes)
This specifies the size of eachPD file”.
* Wraparound data logging wraps a(iytes)

This specifies the total “wraparound buffer” size, which corresponds to
the number of individual data files that are kept for each process before
the oldest start being deleted.

» Total logged data limit per proce@sytes)

Files may be preserved even when they might otherwise be deleted, us-
ing asnapshomechanism described below. This parameter allows the
user to set a hard upper bound on the total data per process, even when
many snapshots are taken.

Terminology and Concepts 3-5

RootCause Data Management

Data Snapshots

Data Indexing

RootCause provides a mechanism for a “snapshot” to be taken programatically.
This does not copy the data, but rather marks it as “preserved” so it is not deleted
by the normal wraparound mechanism described above. RootCause allows a
user to identify points during program execution at which a snapshot of the data
is to be taken. At the Aprobe level, users may specify arbitrarily complex condi-
tions under which a snapshot is taken. This mechanism is used by the
java_exceptionpredefined UAL, which causes a snapshot to be taken when
selected Java runtime exceptions occur.

RootCause provides four levels of control in accessing the data:
» theProcess Data Set

* individual Data Files;

» special events in thErace Index Dialogand

» individual events in th@&race Display

Data is generally selected via the Trace Index Dialog, by double-clicking on a
Process Data Set in the Workspace Tree, or by clicking the Index button. Index
entries are shown for the “Last Data Recorded”, and for any snapshots taken. In
addition, any exceptions detected by ¢lxeeptionsandjava_exceptionpre-

defined UALs may be shown in the Index. (We anticipate additional kinds of
events being available through the Trace Index in future versions.) One or more
events may be selected in the Index, and a Trace Display opened on the files sur-
rounding that event. You can control the size of the context around the event via
theRootCause Options Dialog

From the Trace Index Dialog you can specify what Data Files the Index is to be
generated from, and you can add data files from additional processes, and even
additional workspaces. Using the Examine button in the Workspace Browser
you can directly specify which Data Files are to be viewed, without going
through the Index.

Once you have selected which data files to view, you can view all the data col-
lected in theTrace Display This shows all the events ordered by thread or by-
time, and organized as a call tree within each thread. One can do textual searches
through this display for specific events. Data may be added or removed from a
Trace Display at the Data File level, and the RootCause Log may be merged with
it as well to show the interaction of multiple processes.

3-6

Terminology and Concepts

RootCause Overhead Management

RootCause Overhead
Management

Load Shedding

Enable/Disable Tracing

After a program has started, the overhead that a RootCause trace adds is propor-
tional to the number of traced method calls made by the program as it's running.
Often it's the case that the most-frequently-called methods are of little interest in
the trace, and yet are introducing the most overhead.

RootCause provides several mechanisms to control tracing overhead, and focus
the tracing to the time when it will provide the most information.

RootCause manages tracing overheatbhgl sheddinga process by which trac-
ing is disabled based on its estimated tracing overhead. This is done automati-
cally by default, based on a heuristic analysis of CPU time used by traced
functions. You can disable load shedding, or adjust the heuristics, wilidhe

bal Trace Options Dialogpened by clicking the Options button at the bottom of
theTrace Setup Dialag

When viewing the data, if there are any functions that were load shed, a
LOAD_SHED node will appear in tHevent Trace Tredrom which you can
open a.OAD_SHED Tableto see exactly which functions were disabled and
when.

Using this table you may change the disposition of some or all of the functions
during the next run. Usually you will simply want to select all the functions listed
and change them to “Don’t Trace” so they aren’t traced at all in subsequent runs.
However, occasionally a function will be disabled that is important to trace, and
in this case you may mark that function as “Don’t Shed” to force it to be traced
regardless of the overhead.

Traced methods designated as “Don’t Shed” are marked with a red dot in the
Trace Setup Dialagrou can enable or disable load shedding on a specific
method using th&race Setup Popup Menu

RootCause provides a mechanism to disable tracing at the start of the program,
(or any other point) and enable it upon entry to (or exit from) a method executed
later on. This is conceptually a global switch that can be turned on and off during
program execution. So, for example, if your program does a lot of processing
during initialization, but you're not interested in tracing that, you can:

Select the Program node in theace Setup Dialggand using th®robes Pane
configure a Probe On Program Entry to Disable Tracing.

Terminology and Concepts 3-7

RootCause Overhead Management

Then you can select a method that is called at the start of the processing you want
to trace and create a Probe On Entry to Enable Tracing.

As with most features available through the RootCause console, you can get even
more control and power with a custom probe which directly calls the Aprobe
runtime functionsap_RootCauseTraceEnable() and

ap_RootCauseTraceDisable() to enable and disable tracing only if certain
conditions or data values are detected in the program. Contact support@ocsys-
tems.com for more information on writing custom probes.

3-8

Terminology and Concepts

Glossary

Glossary

Discussion of RootCause and Aprobe requires the use of terms that are either
specific to the products or assigned a special meaning in the context of the prod-
uct. Many of these terms are also defined above and elsewhere in this guide, but
are listed here for easy reference.

ADI file: Aprobe Debug Information file, which contains symbol and line infor-
mation extracted from modulefor use bydeployed probes oapplicatiors
which have beestrippedof debug and symbol information.

APC: “AProbe C” language, a superset of the C programming language, used to
defineprobes An APC file is a text file containing APC source code. APC files
are compiled into &AL file using theapc command.

APD file: “AProbe Data” file, containing information written in a compressed
format by thdog command. These files di@mated (generally converted to
text) by theapformat command.

APD ring: A set of APD files corresponding to a single execution ohaplica-

tion. There is always one persistent file, “name.apd”, and one or more ring files
“name-1.apd”, “name-2.apd”, etc., grouped together in a directory having the
same name as the persistent file, but with a suffix corresponding to the PID of the

traced process, e.g., “name.apd.12345".

actions: Operations, generally gathering or counting data, that are applied at a
certain point in a program. Actions, combined with the points where they are
applied, make uprobes

agent: The part of the RootCause product which actually applies and enables the
probes also known as the Aprobe runtime.

apformat: The Aprobe command whidbrmat (generates text fro)PD
files.

application: An executable or JRE together with all the classes or shared librar-
ies that it loads, also known aggram

aprobe: The Aprobe command which actually applEebesto aprogram

collect: To identify theAPD files from one or morevorkspace and compress
them, along with other necessary information, into a single file with the suffix

Terminology and Concepts 3-9

Glossary

.clct , usually in preparation for moving from a remote machine back to a local
Consoleinstallation for analysis.

Console:The RootCaus&UI and supporting Aprobe tools (e.g., apc, apformat),
through which all development and analysis of traces is performed.

Data File: A file containing RootCause data logged when a process is run under
rootcause; another name for/ARD file.

decollect: To expand aclct file back into a directory with suffixclct for
analysis by the RootCau€mnsole

decollection:the.dclct directory tree created by tlecollectoperation.

deployment descriptor file: An XML file with suffix.xmj , which specifies the
conditions under which a Java probe is to be applied, and what information that
Java probe needs. Séhapter 11, "Custom Java Prohes"

dynamic module: A class or jar file from which classes are explicitly loaded
after execution has begun. Séeld Dynamic Module" on page 8-5

deploy: To compress the information inveorkspacento a file with a.dply suf-
fix, and transfer that file tor@motecomputer for tracing aapplicationthere.

event: any of a number of specially-tagged data itémgged by RootCause and
shown in thelrace Index Dialogr Event Trace Treeor printed by the root-
cause format command.

executable:A binary object file containing the entry point of @pplication
which may be run directly; this is distinct fronslaared librarywhich must be
loaded in the context of a running executable.

format: To process the contentsAPD files into text, or other meaningful out-
put, using the Aprobapformat command. Data collected by RootCause is gen-
erally formatted intoML before being read into the RootCause Console.

GUI: The Graphical User Interface portion of the RootCalsasole SeeChap-
ter 8, "RootCause GUI Reference"

3-10 Terminology and Concepts

Glossary

JRE: “Java Runtime Environment”, the environment which directly executes
Java applications. The RootCauz¥l is implemented in Java and so ships with
a JRE. RootCause for Java allows you to define Java traces for supported JREs.

JVM: “Java Virtual Machine”, the portion of an application (e.g., java, Netscape)
which loads and executes Java class files and applets. This is generally imple-
mented as a single library within tARE

load shedding:The process of dynamically disabling tracing of functions or
methods based on the tracing overhead they introduce into the program. This
mechanism prevents tracing from slowing down a program too much, and auto-
matically creates a list of methods to be eliminated from subsequent traces.

local: Referring to the machine and execution environment in which the Root-
CauseConsoleis installed, wheré&races and perhaps the tracedplication
itself, are developed; the oppositereote where theagentis installed.

log: verh the recording of data by RootCause info an APD file.

log: noun the RootCause Log, in which information about processes is
recorded.

module: A loadable object module; axecutableor shared library In Root-
Cause for Java, a class and all its supporting classes are managed as a module &
well.

PID: Process ID, the number assigned to each process on the system, and used to
uniquely identify eactA\PD ring generated byracingthat process.

Process Data SetThe group oData Files associated with a single process
(PID); another name for aliPD ring.

predefined UAL: A ready-to-us@JAL which may be applied to any application
to perform a specific function. Some are provided with RootCause, additional
ones with Aprobe, and more can be developed by users.

probes: Actions to be performed at specific points ipragram Theseactions
are applied at the probe points in memory, without modifying the program files
on disk.

Terminology and Concepts 3-11

Glossary

program: An executable or JRE together with all the classes or shared libraries
that it loads, also known as application

register: To associate programwith aworkspaceso thatracingwill occur
when the program is run with rootcause on.

registry: The database mappipgograns toworkspacs, and recording other
information that must be checked when programsanewith rootcause arThis
is implemented as a text file named by the environment variable
APROBE_REGISTRY.

remote: Refers to a machine or execution environment separate from that in
which anapplicationis developed; the oppositelotal. In a remote environ-

ment, themodules that make up programmay be fully or partiallystripped and
theworkspacen which the probes were developed is not accessible, so the work-
space must bdeployed.

run with rootcause on: To execute @rogramin an environment where Root-
Cause is intercepting processes. This is generally done by running the
rootcause_on command, then running the application. (On AlX, usedte

cause rurtommand; seéEnabling RootCause for an AlX Application” on page
4-4). Some simple applications may be run directly with the Rootcause GUI Run
button.

shared library: A linked object file which may be shared by many programs, but
cannot be run by itself.

shadow header file:A a C header file which provides debug information for the
system library of the similar name. For example, SAPROBE/shadow/libc.so.h is
a shadow header for libc.so on Solaris

shapshot:A copy of data saved at the point of a notable event. In the context of
RootCause, SNAPSHQdrobesnay be inserted which ensure that the associated
data is preserved.

stripped: An application which was built with debug and symbol information,
but from which that information has subsequently been removed (such as by run-
ning thestrip(1) command), is referred to as a “stripped” application.

timestamp: a string indicating the “wall-clock time” at which aventoccurred.

3-12

Terminology and Concepts

Glossary

traceback: A display of the call stack starting with the function/method in which
the traceback was generated, followed by its caller, then its caller’s caller, etc.

traces: A subset of probes which quickly record the entry and exit of identified
functions or methods. These are indicated inGhk Trace Setup Dialoby
black dots next to the entities containing traces, as distinctgrobes

tracing: The process of applying thecesandprobesin a RootCause/ork-
spaceo anapplication We use this term in general to refer to the data-gathering
that takes place whernregisteed application is running with rootcause on.

trigger: The point at which an action takes place. In particular, when defining
probes within thé>robes Panét may be the entry or exit of a program, thread, or
method.

UAL: “User Action Library”, ashared librandefining “useraction$ or probes
and the program points to which they are applied.

workspace: A directory with suffixaws created and managed by the Root-
CauseGUI androotcause command, which contains tlr@cesandprobeson
anapplication the APD rings generated from those, and scriptsféomating
that data.

XMJ file: Seedeployment descriptor file
XML: “eXtended Markup Language”, a text language for expressing hierarchi-

cal information. RootCaudermat theAPD files collected byracinginto an
informal XML syntax which is then consumed by tRell.

Terminology and Concepts 3-13

Glossary

3-14 Terminology and Concepts

CHAPTER 4 Getting Started

The Setup Script Installation of RootCause from CD-ROM or compressed file is cover@tap-
ter 2, "Installing RootCause"

After installation, but each time before you run RootCause, you will need to exe-
cute its setup script. This will set the necessary environment variables (e.g.
APROBE, PATH, etc.). This s typically done by each user's login script because
it usually needs to be done only once per login session.

The RootCause installation automatically creates a setup script that must be exe-
cuted before RootCause can be run. This script is located in the root of the direc-
tory where RootCause was installed.

For example, if you installed RootCause in directory /opt/aprobe, then you would
execute the appropriate one of the following scripts to set up the environment
before using RootCause. The first of these scripts is for ksh or bsh users; the other
is for csh users:

. lopt/aprobe/setup

or

source /opt/aprobe/setup.csh

4-1

The RootCause Process

The RootCause
Process

You must execute this setup script in your shell every time you log in or other-
wise reinitialize your environment. Therefore it is a good idea to put the appro-
priate command above in your ~/.profile (for Korn or Bourne shells) or ~/.login
file (for C shell). See “RootCause and Different Shells” on page 9-2 for informa-
tion about other shells.

This script defines the APROBE environment variable and appends
$APROBE/bin to your PATH environment variable. It also sets defaults for both
APROBE_REGISTRY and APROBE_LOG environment variables. If the regis-
try does not exist, the setup script will create a default one.

The setup script also defines aliases that are not inherited by subsequent non-
login shells you may open, such as with the xterm command. To ensure that
these aliases are defined (specifically rootcause _on and rootcause_off), you may
add the command:

. $APROBE/setup.kshrc

into your ~/.kshrc file if you are using Korn shell, or the command
source $APROBE/setup.cshrc

into your ~/.cshrc file if you are using C shell.

Now you're ready to run RootCause.

Using RootCause is typically an iterative process with the following pattern:

1. Run your application in the normal way, but with RootCause enabled in its
environment, for example:

rootcause_on
java -classpath . TestDriver argl arg2
rootcause_off

This will record information about the application in tReotCause Log
file.

NOTE: On AlX, you must use “apaudit java” in the above command in-
stead of just “java” to allow RootCause to log and trace your application.
SeeEnabling RootCause for an AlX Applicatidrelow.

2. Start the RootCause Console GUI withtb®cause open command.
This will open theNorkspace Browseaind theTrace Displayshowing the
contents of the RootCause log file.

4-2

Getting Started

The RootCause Process

3. UseOpen Associated Workspaae the application program listed in the
RootCause log display, and approve the creation of the new workspace.

4. Click Setupand define the probes for the application by choosing what you
want to trace in th&race Setup Dialag\ote that RootCause writes the
probes to separate files, so the application itself remains totally unmodified.

5. Execute the application as you normally would, but with rootcause “on”, as
in step 1 above. The application need not be executed from the RootCause
GUI, although there is a convenienRenbutton to do so. This makes it very
simple to use RootCause, even if the application is deeply embedded in a
complex system.

6. Click thelndexbutton to bring up the index of data that was logged for the
newest process in the workspace, and double-click on an item there to format
the trace data collected by the probes, or you can uge#minebutton to
directly select the data file(s) you wish to view.

7. IntheTrace Displaywindow that appears is a call tree. Here you can:

» Use theFind button to search for specific functions or events in the
data.

» Select a node in the event tree and right-click to bring upritaee
Display Popup Menurom which you can disable traces and per-
form other operations.

 Selecta_SYN_JAVA CALL_COUNTS node and uSleow Asso-
ciated Tablao view and navigate to the methods in the data file(s).

» SelectaJAVA LOAD_SHED node and uSkow Associated Table
to view the table of all methods for which tracing was disabled due
toload sheddingluring the run, and disable the tracing of these dur-
ing subsequent runs.

» Save the output as Text or XML for off-line processing

8. When you have completed analyzing the data and modifying the trace to tune
the information collected, go back to step 4 to trace parameters or add probe
actions, or return to step 2 to choose another program to trace.

If you wish to run the probes on a remote computer, then there are additional
steps to send a RootCause workspace to the remote computer before execution.
These are discussed in detaildhapter 6, "Deploying the RootCause Work-
space’’

Getting Started 4-3

Enabling RootCause for an AIX Application

Enabling RootCause
for an AIX Application

This process is explored using a concrete example in the next chaptar,
Cause Dema"

AIX provides no mechanism to cause a shared library to be automatically loaded
into every application started. Therefore, the user must explicitly identify appli-
cations that are to be “intercepted” and recorded in the RootCause log, and subse-
guently traced using the process described in this document.

To run an executable under RootCause from the command line:

$ rootcause run my_program -opt arg2

or

$ rootcause on
$ apaudit my_program -opt arg2
$ rootcause off

If it is not possible to directly invoke the application’s executable from the com-
mand-line, you can simply rename #hecutabldo have aexe suffix, and

replace it with a (soft-link to a) script which will invoke the real application. For
example:

$ mv my_program my_program.exe
$ In -s SAPROBE/bin/run_with_apaudit my_program.exe

Therun_with_apaudit script simply re-invokes the program with apaudit as
in the second example above.

When we use the phraseih with rootcause drwe refer to any of the above
mechanisms.

To enable automatic RootCause actions for Java applications (i.e., those normally
run with the “java” command), you must do this for the najasa executable.

This is generally not necessary, since you can more easily change “java” to
“apaudit java” at the point of invocation. However, if you want to enable Root-
Cause in your central Java installation, you should contact OC Systems for assis-
tance: different Java versions are configured differently.

4-4

Getting Started

CHAPTER 5

RootCause Demo

This demonstration program, included as part of the RootCause installation, has
been designed to provide an introduction and overview of the RootCause prod-
uct. The program is:

$APROBE/demo/RootCause/Java/Pi.class

It is a simple Java program, which computes the value of Pi by iteration using
multiple threads. You can find the source in the same directory as the class file.

The goal of this demonstration is to provide an overview of the whole RootCause
process, showing initial definition and tuning of the trace, then collection and
viewing of more detailed data about a specific function. The demonstration pic-
tured in this chapter was performed on Solaris. Output should be very similar on
AIX and Linux.

5-1

Set Up

Set Up

Use a Supported JRE

Use a Local Disk

Defined X-Windows
DISPLAY

Before running this RootCause Demo, you must install and set up to use Root-
Cause as described@hapter 4, "Getting StartedThis will define the APROBE
environment variable which is necessary to use RootCause.

In the instructions that follow, we’'ll uSSAPROBHEO refer to the path where
RootCause is installed, for examgdet/aprobe.

Note that only Version 1.2 or higher of the Java runtime environment (JRE) is
supported. You can verify this by typing “java -version”. If it says something
like java version "1.1.6" then that will NOT work. Se€hapter 2, "Sys-
tem Requirementgor more information.

We recommend you set your current directory to a disk local to the machine
you're running on, though this is not required.

Lastly, make sure your DISPLAY environment variable is set. If you're using a
Windows client that is running X emulator software such as eXceed or Reflec-
tion, we recommend you move to a Unix display for your initial evaluation. If
this is impractical, see “X-emulators: (Exceed, Reflection)” on page 8-47.

5-2

RootCause Demo

Run With RootCause

Run With RootCause Run the following commands:

rootcause_on
java -classpath $APROBE/demo/RootCause/Java Pi
rootcause_off

Therootcause_on command enables the automatic logging of every process
that is started, andotcause_off disables this logging. When the Pi class is
“registeed” with RootCause, it will be traced according to your specifications as
well as simply being logged. The illustration below shows the set up and demo

execution..

r

= Demo

5|

¥ . Awork/RootCauzessetup
APROBE=/workRootCause
AFPROBE_REGISTRY=/homesdema,’, rootcausesregiztry
APROBE_LOG=,homesdemos , rootcausesrclog
LO_AUDIT=

Setting files to 416

$
% cd Atmpcsdemo
?
% rootcause on

Log file iz Ahomesdemos,rootcausesrclog

Regiztry iz shomeddemos,rootcausesregistry

RootCause is enabled in the current shell,

lUze “rootcause regiszter —-17 to list applicationz that will be probed,
$
% java -clazspath $APROBE/demc/RootCausesJava Pi
Thread calculates PI = 3,14153265358973323046
Thread calculates PI = 3,1415926035

i
¥ rootcauze off

RootCause is disabled in the current shell,
i
_|# rootcause open
Starting RootCause, ..

NOTE: On AlX, the above process is slightly different than shown above. The

invocation of the program must be done withrbetcause rucommand
directly. For example, the above sequence is changed to:

rootcause run java -classpath $APROBE/demo/RootCause/Java Pi

See"Enabling RootCause for an AIX Application" on page.4-4

RootCause Demo

5-3

View the RootCause Log

View the RootCause Enter the following command:
LOg rootcause open

This will open the RootCause main window, and then a view of the RootCause
log. This shows th&race Displaywindow, the window for viewing all trace
events. On the left is the Event Tree; on the upper right is the source/text window;
and on the lower right is the “details” window. In the text window you will see
some information about the log file.

Locate the APP_START event (in the Trace Event window) associated with the
Pi application run earlier. To view information about this event, select the
APP_START node in the event tree with a left click. This will fill in “details”
about that event in the lower right window.With the APP_START Pi node high-
lighted, right-click to bring up th&race Display Popup Menu

Click Open Associated Workspaicethe popup-menu of the Pi APP_START
event.

5-4 RootCause Demo

View the RootCause Log

=| Trace Events — relog(RootCause Log File) o=
File Edit View Step Help
| % pf|tf VW W & Find
Event Trace: (viewing events 0 - 2) : ipplication Intercept:
START_DISPLAYED DATA | This records the start of an applicatio =]
7 -'lF'F":'T-'lF'T tlava) 17762 Pi : thatwas nottraced.

APP_TRACED indicates the start of a8
thatwas traced.

Program Info rData Files |
: Event Details |’ Call Stack |
|[F APP_START (Javay 17762 i

Al time=Dec 17 11:38:43.840735420 2

Ehir o =t N L

process = 17762

Find Text in Trace Events
parent process = 149872
: hostid = 80e6f714
Open Associated Workspace §§ program = iworkiRootCauseljava_res

class=Pi
classpath = worklRootCauseldemoiR
wiarkingdir= Ampldema

command = java -classpath fork/Ro

1 E

| I

This will open aNew Workspace Dialogith the program name and default
workspace filled in.

This combination: selecting a node in the tree, then using the popup menu to
choose an operation, is the basic way of working within RootCause.

RootCause Demo 5-5

Create a RootCause Workspace

Create a RootCause To complete the creation of a RootCause workspace for the Pi application:
Workspace
1. Click Okin theNew Workspace dialog complete the creation of the work-
space.
=| Mew Workspace |
Set Workspace Parameters

(Java Workspace |

Workspace file: |J‘tm pidemoiPi.aws |

wJava file: |tCauseidemDIRDDtCauseIJavaIPi.class|

Class Path: |rananntCauseIdemDIRDDtCauseM ava|

Class Name: IPi |

JRE Path: |Jsefjava_rteISnIaris_JRE_1 .4.E|Ihinfjaua|

Working Directong |J‘1m plderman |

J2EE Server Directory: |

] | ok || cancel || hew |

2. ClickYedo confirm that you want to register the Pi class with this workspace.
This registration is how RootCause determines what applications to trace.

fpplication not registered |

This application is not registered with this workspace.
Do you want to register the application with this workspace?

Yes No

5-6 RootCause Demo

Create a RootCause Workspace

You may close the RootCause Log window opened in a previous step.

You now see thRootCaus&Vorkspace Browsefmhis is described in detail in
Chapter 8, "RootCause GUI Reference”

=| RootCause — Piaws (build needed) o
Workspace Edit Setup Execute Anabze Help
| Setup | Build | Run | Deploy | Decollect || Index | Examine
orkspace: tmp/demo/Pi.aws §;h‘lessages:
@ Prl:lgram WO LATT UETITE MaLES dATTH PTUOHES. Ubt:
MoTkRoDICaUS efdema/RootCauseklavalPi clas| o]\ oTkeRace-=hew -to create & work
A Workspace-=0pen - to open an existi—
¢ UALs Ei Examine [og file: /homedtji rootcauselr
[w] IFPiclasstrace.ual - Standard traces and ¢ orkspace set to fimpidemolPi.aws
v IF sigsegv.ual- Logs occurrences of Sedme| “ehacking application registration.
[& exceptions.ual- Logs C++ exceptions. | iRoptCause: Adding Class: "PI" -= "ftrn
[w & log_env.ual - Logs environment variables) &
== _cxceptions ual - Logs java exception 8 Siues=I = s= = AT EI DA
] I7verifyual - Yerifies cansole and agent envi &

o
o
—
o

Application is registered.
gi Saving workspace Piaws.
Jwarkspace Piaws saved.

[4

[» 4 [

i3

RootCause Demo 5-7

Define the Trace

Define the Trace

Enable a UAL

Define Method Traces

There are several aspects to a RootCause trace:

e Predefined UALs selected from tki¢orkspace Tree

* Method and Line traces selected from Tmace Setup Dialag

* Probesto gather or preserve data, also selected ifrfoe Setup Dialogand

. gsek;-writen Custom probes as describe@liapter 11, "Custom Java
robes:'

In this part of the demo we illustrate the use of Predefined UALs and tracing
method calls; then we’ll return to the Trace Setup Dialog to add some probes.
Custom probes are an advanced feature not presented here.

In the RootCause GUI main window, opened in the previous section:

Under theUALs nodein theWorkspace Tree

1. Check the checkbox next to predefined UAL labeled
java_exceptions.ual , as highlighed in the figure above. Simply check-
ing this box will report all user-defined and many predefined Java exceptions.

Now we’'ll add traces specific to this application.
2. Click on theSetupbutton in the button bar.

This will open theTrace Setup Dialogshowing the modules of the application in
the Program Contents Tre& heProgram Contents Tradentifies the modules,
directories, packages, classes and methods in the program, and allows you to
specify complex actions on each method. Skea Program Contents" on page
8-22for a description of the Java hierarchy.

For this demo we'll first just specify a trace on all methods in the Pi class, then
return later to add data and probes.

3. Click on the “lever” icon next to th®! Root Java Module node to expand it.
You'll see the directories in the class path under this.

4. Similarly, expand the first node, which should be the $APROBE/demo/
RootCause/Java directory from the classpath. You should now sgd’the
node, representing the Pi class.

5-8

RootCause Demo

Define the Trace

5. ClickontheCPinode to selectit, then right-click to see fhrmce Setup Pop-
up Menu

6. ClickTrace All InPi.

7. Click theOK button at the bottom right of the dialog to record the trace and
dismiss the Trace Setup dialog.

=| Trace Setup — Pi.aws |
Program Contents: §§ ~ource File: Pijava
@ PP 1 =

@ M RootJava Madule (§iava$) : Simport Java 0.7,
@ JF horkiRootCauseidemo/Roo

&= Custom

simport java.math.BigDecimal;

2
3
4:
: a0 Originally wiritten in C++ by:
& C : G0 Bruce Dawson, Cygnus Soffws
7
a
<]

Trace This kem S hftpc i cygnus-soffware. co

Don't Trace This Kem i Translated to java by pxk of OC

Trace All In Pi

Don't Trace All In Pi
Enable Load Shedding For This Item Variables | Prohes |
Disable Load Shedding For This Hem
Remowve Probes For All Child kems

Edit Wildcards...

Find FunctionMethod... Ctrl-F
Find Source File...

Finul... Options... 0K Apphy Dismiss
_ Find.. || oOptions... | Lok || awmw || D

RootCause Demo 5-9

Trace With RootCause

Trace With RootCause

As was done in the preceding section,“Run With RootCause” on page 5-3, run
the following commands:

rootcause_on

java -classpath $APROBE/demo/RootCause/Java Pi
rootcause_off

Or, for AIX:

rootcause run java -classpath $APROBE/demo/RootCause/Java Pi

This time, since the program is registered with a workspace, it will be traced as
specified in the workspace, and the resulting output will be recorded within the
workspace. There will be some startup delay, but if you notice that the program
runs slower once started, this is probably because your workspace is being
accessed across the network from your machine. See “RootCause and Efficiency
Concerns” on page 10-1.

5-10

RootCause Demo

View The Data Index

View The Data Index

We're now ready to view the data generated by running with our Trace. This is
discussed in detail itRootCause Data Management" on page 3-4

In theWorkspace Browsewrindow, do the following:

8. Click thelndexbutton. This will bring up th&race Index Dialodor the
most recently generated data.

9. Inthe Trace Index Dialog, click tigelect Eventsutton.

|

I_||

2002-12-1711:55.. Piclass
2002-12-17 11:55... Piclass
2002-12-17 11:55.. Piclass

Trace Index Dialog — a
Time Application| Process| Thread| Kind | Event
18114 OFILE |Last Data Recorded |Piclass-1.apd Refresh Index
18114 8/SNAP [EXCEPTION Snapshottaken -
Select Data Files...
18114 8SNAP EXCEPTION Snapshot taken|_ o Data TS
Select Events...
Find In Index...

| I

| Cancel || Help |

Copen |

10. In the Trace Index Dialogpuble-clickon the second item in the table, the
first item with an Event name of EXCEPTION.

This will open a Trace Display Dialog centered at that EXCEPTION snapshot
event.

RootCause Demo 5-11

View The Data Index

=| Trace Events — Piclass.apdi{Process Data Files)

[»

(L) THREAD_EMND id=181147
@ T PROCESS: 12114, THREAD: 2 _sta
(L) THREAD_START id=18114.8
@ m ENTER Pizrung
Q- m ENTER Picalc_pif)
P cception java.lang Arithy
S EXCEPTION
m EMTER Fi:ataninwvintiaw
m
m

EXIT Piz:ataninvintiava.rm
EMTER Pi:ataninwintjan
e EXIT Picataninvint(jana.m
e EXIT Piccale_pid
e EXIT Picrung
(L) THREAD_EMD id=18114.3
@ T PROCESS: 18114, THREAD: 9 _sta

(L) THREAD_START id=18114.9 | —

r J|
File Edit Yiew Step Help
| ¥ of tf) (W W BF| |Find
Fvent Trace: {viewing events 0 - 67) :User-Specified Event:
= - | Seethe Details tab for the event text -

Program Info rData Files |

Event Details I

Call Stack

gz Exception javalang.ArithmeticException (Java)

time=Dec 17 11:65:22 2491167058 2002
Java exception raised:

at Pi.calc_pi(Pijava: a4
at PiruniPijava: 71

at java.math MutableBinlnteger. divide(MutableB
at java.math Biglnteger divideAndRemainder(B
at java.math BigDecimal.divide(BigDecimal jav

5-12

RootCause Demo

Examine and Revise the Trace

Examine and Revise The EXCEPTION trace event selected from the index should appear highlighted
the Trace in the Trace Display. This was a result of checking java_exceptions under
"Enable a UAL"above.

You see that the exception occurred within the methochic_pi from the
preceding ENTER node, and see that it occurred before the metlatahin-

vint was entered. These ENTER and EXIT nodes are a result of the “Trace All
In Pi” action added undébefine Method Tracesabove.

Use the up-arrow key to go the preceding event labeled “Exception” (in mixed
case) to see more information about the exception iBtbat Details Pania
the lower right, as shown above.

If you scroll to the top of the Event Trace, you will see a number of threads. The
first is the main thread of the Java application; the last two are those created by
the application to compute Pi; the rest are created by the JVM itself and contain
no traced calls.

The event tree is a call tree, and can be very useful. From an ENTER or EXIT
node in the tree you can use ffrace Display Popup Mento:

» remove the called method from the set of methods to be traced,

» find the next reference to the same method in the trace events, or

» go to the method in thErace Setup Dialogp trace additional information.
As you step to each event, tBeent Details Panenay show additional informa-

tion about that event. S&€race Display" on page 8-3br a more complete
description of this window.

Take some time to explore the event tree. Then we will look at using the infor-
mation available here to revise or “ tune” the trace used in the next run.

Call Counts Useful information about the methods called in your program may be obtained
by looking at the call frequency as shown in the CALL_COUNTS table.

1. Select (left-click) the SYN_JAVA_CALL_COUNTS node, near the end of
the event tree.

2. Right-click (with MB3) to show th&race Display Popup Meneon this node.

RootCause Demo 5-13

Examine and Revise the Trace

3. ClickShow Associated Tabl€his will open a table listing each called meth-
od and the number of times it was called.
4. Select (left-click) thepi::<init>" entry in the call count table.

5. Right click to show the popup menu.
6. SelectDeselect Function In Trace Setirpthe popup menu.

You can alsd-ind Function In Trace Event®s search for methods in the call tree,
and remove them from there.

You can also search for methods in the call tree, and remove them from there.

=| Tahle For S¥N_IAYA_CALL_COUMNTS |
Description:

ava Call Counts Svnthesized From Available Data |
Data:

Count | Method
4"Pizataninvint(ava math BigDecimal)" 1M "§javad’
2["Piz=init=(int)" [N "§javaf"

Deselect Function In Trace Setup

—| k2| b2

Find Function In Trace Setup
Find Class In Trace Setup
Find Function In Trace Events
Find Class In Trace Events

First column is call count, second is method. |

4 Dismiss || Help ‘

7. When you've finished making changes to the trace, clicRigraissbutton
at the bottom of the SYN_JAVA_ CALL_COUNTS table window, and then

8. Click theBuild button in the main window.

9. Notice the effects of removing these calls in the next trace we generate.

5-14

RootCause Demo

Examine and Revise the Trace

NOTE: In most “real” programs, high-overhead functions selected for tracing are
automatically identified and disabled V@md sheddingand are listed in the
LOAD_SHED Tableassociated with the LOAD_SHED node at the end of the
eventtree. This demo doesn’t run long enough for the load shedding heuristics to
apply. SeéRootCause Overhead Management” on pagéd-& general dis-
cussion of load shedding.

RootCause Demo 5-15

Tracing The Details

Tracing The Details

Open Trace Setup

Select A Single Method

Log Parameters

So far we have seen how the RootCause process works by:

enabling a predefined UAL (java_exceptions);
defining a simple trace from the Trace Setup Dialog;
running the application under RootCause;

choosing an event in the Trace Index Dialog;
viewing events in the Trace Display; and

modifying the trace by selecting methods from the call counts table.

RootCause allows you to record much more than the entry and exit of methods
and threads. You can record data values and insert probes as well.

Click theSetupbutton in the Workspace Browser to return to Thrace Setup
Dialog.

This is just as in “Define the Trace” on page 5-8 above, but this time
we’ll record some details about a specific meth@idataninvint,
rather than tracing everything.

Expand the Pi class node to see the methods.
Select thataninvint method. This will bring up the source code for this
method in theSource Paneand show a Log Parameters checkbox inthe-

ables Pane

Check thdParametersheckbox.

5-16

RootCause Demo

Tracing The Details

=| Trace Setup — Plaws NI

Program Contents: : [Source File: Pijava

@ " PP A < el
& %) RootJava Module (javas) |

o 23 rivate BigDecimal ataninvint(B—
¢ %J MworkRootCauseidemoRanf | - {p g G

& custam L1/ 25 casmaizero= new gD

@ %Wl P |0 26 BigDecimal one = new BigD
appg =init={ing) §§D 27 BigDecimal twa = new BigDe
L dataninvintiava.math B 28

arpz Al pif) |l 29: BigDecimal Result= one.divii_]

wppz MNaIN(ava.lang. String -

ap tund Variables i

I ararneters

Finl... Options... 0K Apphy Dismiss
S [ox][_ammw || o

Add a Snapshot Probe 5. In that same lower-right area, click on fPr@bestab to show th&robes
Pane Probes in this context are spedciationsthat can be performed at
points in the currently selected method.

6. Click the “On” checkbox.
7. Where it says No Trigger, select Function Entry.

8. Where it says No Action, select Log Snapshot.

RootCause Demo 5-17

Tracing The Details

Save and Build the
Trace

Run With RootCause

Index the New Trace

9. Whereitsays ROOTCAUSE_SNAPSHOT, select this and type in “My Snap-
shot” and hit Enter.

rVariahles rPruhes |

Prohes
On Probe Trigger Probe Action Probe Parameter
i |Fun[:1iun Entry || Log Snapshot v "My Shapshot | - |

New Probe

We've now requested that all parameter values be logged (recorded) on entry to
methodPi::ataninvint , and also that a data snapshot be taken at this point
and marked with the Event Name “My Snapshot”.

Note A snapshot causes data which might otherwise be deleted do to “data
wraparound” to be preserved. In this small demo, a snapshot is not really neces-
sary since it doesn’t generate enough data to wrap around and cause old data to
be lost. Se&Data Snapshots" on page 3¢ more information.

10. Click theOK button at the bottom right of the dialog to save and build the
trace and dismiss the Trace Setup dialog.

11. Again, check that rootcause is enabled with eithemothiteause_oor root-
cause statusommand. Then run the application by running Java on the Pi
class, as described in “Trace With RootCause” on page 5-10.

12. Click thelndexbutton in the Workspace Browser window.

13. Inthe Trace Index Dialog that comes up, double-click on the SNAP entry la-
beled “My Snapshot” to go right to where our new probes were added.

14. Select the “ENTER ataninvint” node immediately preceding the Snapshot
node to see the Parameter values on entry.

5-18

RootCause Demo

Tracing The Details

Find the Calls Of Interest ~ The Trace Display window opened from the Trace Index Dialog operation will

contain many events, including other callataninvint

15. With the “ENTER ataninvint” node selected, right-click to showTitaee
Display Popup Menand choos&ind Function In Trace Events

16. This will bring up thd=ind Text in Trace Events Dialagith the current
method name filled in. Click Next, and the next occurrence of this string will
be selected. Thereafter you can continue clickiagt or enter any other
string to search for. You can ugénd Textin Trace Evenfsom any the pop-
up or Edit menu to search for any string in the current Trace Display.

.
=]

Trace Events — Pl.class.ap diPracess Data Files)

File Edit View Step Help

pf| tf| tf| |wf| &F| &F| |Find

Find Text In Trace Events
Find Text In Trace Events

Find: |Pi::ataninvintﬂava.math.EligDeu:imal) |

ava
BigDecimal atanirwint(Elig[:

ecimal one = new BigDeci

(| [[] Consider Case
ecimal two = new BigDeci
| Eext || Ereuiuus H EaE || Help ‘ eritnal Be ||I’r—nnnr~ii1rir~inz
T M CMICH PLCae_ny e ' =
L Exception java.lang.ArithmeticExo Program Info rDataFiles |
S EHCEPTION :

Event Details |’ Call Stack |

© i ENTER Fizatanimvintjava math. B ey ey sy g

mr EXIT Piataninvint(java.math Big time = Dec 17 12:30:46. 575332160 2002
L lE M TER Piataninwint(java.math. process = 18756, thread =9 _stard)
& My Snapshot symbol = "Pizataninvint{java.math.BigDeq
i EXIT Piataninvint{java. math Big : @ D this)
m EXIT Pi-cale_pio : Thread[Thread-2,5,main]
EXIT Pic- || -
" Frund Ll 238.0
(D) THREAD_END id=18756.9 - | :
O 3 Do) B | ¥

RootCause Demo 5-19

Where To From Here?

Where To From Here? This chapter should have given you a good overview of the process of developing

a trace and gathering data for a program. Now you're ready to try it on your own
application.

5-20 RootCause Demo

CHAPTER 6

Deploying the
RootCause Workspace

Installing The
RootCause Agent

RootCause performs root cause analysis of problems at the user's site, in the pro-
duction system. This chapter discusses how to run traces on a remote computer.

RootCause has two components: the RootCause Console and the RootCause
Agent. The Agentis the subset of RootCause that is used to run RootCause traces
on a remote computer. The Console is the full product that allows one to define
and view traces as well as run them (that is, the Console also includes the Agent).

If you're just “trying out” the deploy process on a single computer, your Console
installation can also serve as the remote installation. If you really are deploying
RootCause to a remote site you will want to install just the RootCause Agent sub-
set there, and enable remote execution using RootCause agent licenses.

Follow the installation directions in “RootCause Agent Installation” on page 2-7
to install the RootCause Agent on the remote computer; this only needs to be
done once per remote computer.

After this is installed on the remote computer, you deploy RootCause trace defi-
nitions to the remote RootCause Agent and get back files that contain the logged
trace data.

6-1

Building a “Traceable” Application

Building a
“Traceable”
Application

Deploying A
RootCause Workspace

The Agent installation does not have its own license—the license is delivered
with the deployed probes. Instead, you will obtain one or more agent license keys
from OC Systems and append them to the file

$APROBE/licenses/agent_license.dat

in your RootCause Console installation. Agent licenses will be automatically
copied into the deployed workspace (see “Deploying A RootCause Workspace”
on page 6-2). See “Licensing” on page 2-8 for a more in-depth discussion on
licensing issues.

Any Java application is traceable with RootCause so long as it's running under a
supported JRE. Sé8ystem Requirements" on page ,2a@d “Your Application
and Different JRES” on page 10-12

When you have built and tested the traces and probes, and you want to apply
them to an application that exists at (or will be shipped to) a remote site, you are
ready to deploy the workspace containing those traces and probes. This work-
space will be your “flight recorder” for the application at the remote site. To gen-
erate the deploy (.dply) file:

1. Confirm that you're developing and testing with the same build of the appli-
cation you'll be shipping. See “Building a “Traceable” Application” on
page 6-2.

2. Develop and test your traces locally. When you see the information you think
you'll need at the remote site, then you're ready to deploy.

3. Enable theverify predefined UAL in theNorkspace Browsexindow. This
checks the correspondence between the program and modules on the remote
system with those in the local (formatting) environment, and alerts the user
when an incompatibility is detected.

4. Click on theDeploybutton in the maiWorkspace Browsexindow. This
will display theDeploy Dialog

5. Inthe Deploy Dialog, enter a file name for your deploy file. This file will be
created by RootCause, and it will contain the trace definitions for your current
workspace.

6-2

Deploying the RootCause Workspace

Registering a Deployed Workspace

Registering a
Deployed Workspace

Collecting Data At The
Remote Site

6.

10.

11.

12.

In the Deploy window, click “OK”. RootCause will attempt to create the
dply file. For example, if you're using the workspace create@lapter 5,
"RootCause Demg@'then this will createlply .

The.dply file will also contain the license needed to run RootCause on
the remote computer. When thiply file is created, the file
$APROBE/licenses/agent_license.dat mentioned in

see “Installing The RootCause Agent” on page 6-1 is automatically in-
cluded. If the license file is not found, or does not contain a license, an
error dialog will appear. If you see this, you can click “Yes” to proceed
with deploying, or “No” if you wish to investigate getting a valid Agent
license.

Transfer thedply file over to the remote computer (be sure to specify bi-
nary mode if you use ftp).

On theremotecomputer open an xterm or other command shell.

Register the application on the remote computer usingathieause register
command. For example:

rootcause register Pi.dply

This creates a workspace in the current directory (or a path specified with
the-w option) and registers the workspace with the main Java class.

Enable RootCause on the remote computer in the environment where the ap-
plication will be run, using thewotcause_on command. Note that this

needs to be done in a parent process of the shell that will run the application(s)
so that the application(s) will inherit the value of the environment variables it
sets.

Run the application(s) as you normally would.

When you want toollectand examine the RootCause trace data, execute the
rootcause collect command on the remote computer. For example:

rootcause collect -c Pi
Many classes may be collected at once by listing them on the collect

command line. The applicable files in each registered workspace will be
compressed into a singldet file.

Deploying the RootCause Workspace 6-3

Formatting and Viewing the Remotely-Collected Data

Formatting and 13.

Viewing the Remotely-
Collected Data

14,

15.

16.

17.

18.

Transfer theclct file back to the local computer where the RootCalise-
soleis installed (be sure to specify binary mode if you use ftp).

In the RootCause GUI, click on tBecollectbutton in the main window.

This will display theDecollect Data Dialoglf the RootCause GUI is not cur-
rently running, you may open the collect file when starting the GUI, for ex-
ample:

rootcause open file.clct

In theDecollect Data Dialogenter the name of thelct file and the desti-
nation directory into which the file will be expanded. The destination direc-
tory should be empty as thikecollectoperation will expand a number of files
into this directory. Then click “OK”.

This will create adecollectiona directory, with suffixdclct , contain-

ing the workspaces collected from the remote computer. It will then pro-
ceed with theDpen Decollectiomperation, which will show @race

Index Dialogfor the newest data in the decollection.

Select the event(s) you wish to view, or 8stect Data Fileto change the
data that was indexed.

Format the data into a Trace Display. If you used/#dy predefined UAL

as suggested ilbeploying A RootCause Workspace" on page, &'l see

a TEXT node identifying any mismatches that may cause formatting prob-
lems.

From the Trace Display for the decollected data, you cahddeéData Files
To Displayto add in the Decollected RootCause Log file and other data.

6-4 Deploying the RootCause Workspace

CHAPTER 7 RootCause Files and
Environment Variables

RootCause consists ofGUI to define traces, the Aprobe runtime to implement
those traces, and a number of directories, files, and variables in the execution
environment which control and record when the traces are applied. This chapter
briefly describes those files and environment variables.

Workspace All activity is performed in the context of a workspace. A workspace is a direc-
tory which contains all the information about the target program configuration,
the configuration of the trace setup, and the resulting log files.

The contents of the workspace are manipulated by the RootCause GUI. If you
change something within the workspace, such as a script or configuration file, the
changes may be lost the next time a rootcause GUI operation is performed.

UAL File A user action library JAL) consists of a set of probes that are attached to the tar-
get program when it runs. The probes are activated when specified portions of the
target program are reached. Sagmnedefined UAIls may be selected in the Root-
Cause GUWorkspace Treeadditional ones are provided in the underlying
Aprobe product, and the user can build custom UALS. As a user of RootCause,
you do not need to be concerned with these files. RootCause handles them auto-
matically. If you do use the underlying power of Aprobe, then you can create
your own probes and your own UAL files.

7-1

XMJ File

XMJ File An XMJ file, also known as dava Probe deployment descriptor filis a user-
created text file containing an XML description of Java probes. The DTD for this
is on-line in SAPROBE/html/xmj.dtd.

Data (APD) File Aprobe places thingged data from a tracezkecutablénto aData File also
called anAPD file. For the most part, RootCause users are isolated from this;
however, when formatting the data, you can choose the data files you wish to
view or generate an index from. S@&wounding Total Data" on page 3fér
more information.

Process Data Set Process Data Sets are used to collect more than one wrap-around set (or ring) of
data files for a single program. Ségata for Multiple Processes" on page 3ef
more information.

Deploy File A deployfile (with extensiondply) is created by thBeployoperation in the
RootCause GUI. It contains all the information needed by RootCause to trace a
(possiblystripped program at aemotesite. The deploy file is transmitted to the
remote computer and installed there to enable tracing of the program on the
remote computer.

Collect File A collectfile (extensionclct) is created by theotcause collect com-
mand. It contains all the information collected by RootCause for a traced pro-
gram at a remote site. The collect file is transmitted from the remote computer to
the local computer where it islécolleced” to examine its contents.

Decollection TheDecollectbutton in the RootCause GUI unpackslet file created by the
rootcause collect command. This creates a directory containing all the dec-
ollected workspaces. This directory is known as a Decollection (with extension
.dclct), and is directly accessible using tB@en DecollectiomndRecent Dec-
ollectionsitems in the RootCause GUWMorkspace Menu

RootCause Registry To use RootCause on an application, you mustrégisterthe application by
adding it to your RootCausegistry The RootCause GUI will do this automat-
ically, and there is a command line interface as well (seedk=use reg-
ister command).

RootCause will only trace applications defined in the RootCause Registry.

7-2 RootCause Files and Environment Variables

RootCause Log

RootCause Log

On any one computer, there may be one or possibly many different registries,
depending on your desired use. For example, it would be common for each user
to have his/her own registry. Also, there may be one registry for the whole com-
puter if it is a dedicated server and there is an integrated set of RootCause probes
designed for that server.

The location of the RootCause registry is defined byAPIROBE_REGISTRY
environment variable, and is generally under.thetcause Directoryso that
each user has a separate registry.

All manipulations of the registry are done usingrfwcause register
command, or via the items in the RootCause GUI's Workspace menu.

Important: The registry is meant to be manipulated only withrtlaécause
register ~command (See “rootcause register” on page 9-17). Do not change its
contents by any other means!

The RootCause log file records what programs are started and what programs are
traced while RootCause is enabled. Programs that are started but not traced are
recorded as APP_START events. Programs that are traced by RootCause are
recorded as APP_TRACED events. The RootCause log file may also contain
other messages and debug information as TEXT events. The RootCause log file
may be examined in the GUI and used as a starting point for creating or opening
the workspaces associated with programs recorded in the log file.

By default RootCause writes a line to the log file whenever an applicatiom is
with rootcause oyor fails to run due to an error. If you wish to record only those
applications that are traced, you may change the verbosity level withothe

cause registetommand.

To log only applications that are registered and probed:

rootcause register -s verbose -e off

To log all applications that are executed when rootcause is enabled, whether or
not they are registered:

rootcause register -s verbose -e on

While becoming familiar with RootCause, you may want to examine the log file
often. You can display it using theotcause log command.

RootCause Files and Environment Variables 7-3

.rootcause Directory

.rootcause Directory

rootcause.properties

setup Script

The directory

$HOME!/.rootcause

is created and used by the RootCause GUI to maintain some user-specific
attributes of your RootCause environment:

» theRootCause Lodjle is located here by default

» theRootCause Registiig located here by default as well.

* acustomizedootcause.propertidde may be placed here.

» apreferences file in this directory contains the recent workspaces and oth-
er RootCause GUI internal settings.

» temporary files are created here.
The directory is calledrootcause_linux on Linux androotcause_aix on

AIX to avoid collisions and confusion on mixed systems sharing a common
$HOME directory.

The APROBE_HOMEmay be used to specify a different location.

The file
$APROBE/lib/rootcause.properties

defines some properties used to determine the RootCause appearance. In gen-
eral, you need not be concerned with these, but if you wish to change the back-
ground color or other property defined by UlManager you can do so by placing
an edited version of this file in theotcause Directory

The files SAPROBE/setup and $APROBE/setup.csh are provided to define the
RootCause environment in your shell. S&leapter 4, "The Setup Scripfr de-
tails.

7-4

RootCause Files and Environment Variables

Environment Variables

Environment
Variables

APROBE

APROBE_HOME

APROBE_JRE

The APROBE environment variable points to the RootCause product installation
directory, and is automatically defined by the setup script. We suggest that you
do not modify this environment variable.

The APROBE_HOME environment variable defines a non-default location for
the.rootcause Directory

If APROBE_HOME is defined when the $APROBE/setup or setup.csh script is
run, theRootCause LogndRootCause Registifjles are created under
$APROBE_HOME. In this way, one can have a single system-wide RootCause
environment by setting APROBE_HOME globally, and creating world-accessi-
ble registry and log files there.

The APROBE_JRE environment variable specifies a non-defakl{Java
installation) to use instead of the one shipped with RootCausée'Pladerm-
Specific GUI Issues" on page 8-47

APROBE_JAVA_HEAPSIZE

APROBE_LOG

The APROBE_JAVA_HEAPSIZE environment variable specifies a non-default
Java heap sized to be use by the RootCause console GUI. The value of this envi-
ronment variable is the entire Java parameter value. The default is “-Xmx128m”.

The APROBE_LOG environment variable specifies the location of the Root-
Cause Log file (se#RootCause Log" on page -3t is initialized by the setup
script (seéThe Setup Script" on page 4-1o the nameclog under theroot-
cause Directory If unset, the location $APROBE/arca/rc.log is used. Generally
theRootCause LogndRootCause Registrgre kept in the same directory,
defined by the value of tliePROBE_HOMEenvironment variable, so you
shouldn’t have to set this directly.

RootCause Files and Environment Variables 7-5

Environment Variables

APROBE_REGISTRY

APROBE_SEARCH_PATH

LD_AUDIT (Solaris)

The APROBE_REGISTRY environment variable specifies the location of the
RootCause registry file (séRootCause Registry" on page Y-R is initialized

by thesetup Scripto the nameegistry under therootcause Directory|f

unset, the location $APROBE/arca/registry is used. Generaljdbause

Log andRootCause Registrgre kept in the same directory, defined by the value
of the APROBE_HOMEenvironment variable, so you shouldn’t have to set this
directly.

The APROBE_SEARCH_PATH environment variable identifies directories to be
searched by RootCause for source files when the file is not found in the directory
from which it was compiled. If defined, The APROBE_SEARCH_PATH envi-
ronment variable is a colon-separated list of directories (like PATH and LIB-
PATH) in which to search for a a source file to display, if the file is not found in
the directory recorded in the class file.

For example, if a class is compiled from files in directories /build/common, /
build/console, and /build/gui, and the directory /build has been moved to /old/
build, you could do:

export APROBE_SEARCH_PATH=\
"/old/build/common:/old/build/console:/old/build/gui"

Use of the environment variable to find source files is not usually necessary, since
the RootCause GUI provides an interface for specifying the search path the first
time it's needed, and this path is recorded in the workspace.

The APROBE_SEARCH_PATH environment variable is also used by RootCause
and Aprobe to findbjectfiles that have been moved -- see Appendix A of the
Aprobe User’s Guide.

The LD_AUDIT environment variable is recognized by Swaris operating

system and is used by RootCause to hook into applications that are registered by
RootCause. The command®tcause_on androotcause off will set and

unset the LD_AUDIT environment variable for RootCause.

The RootCause setup script does not set the LD_AUDIT environment variable,
so you will need to executeotcause_on after the setup script to actually
cause RootCause to start examining each new process for probing. LD_AUDIT

7-6

RootCause Files and Environment Variables

Environment Variables

LD_PRELOAD (Linux)

is a normal Solaris environment variable with the usual semantics about being
inherited by sub-processes, etc.

At OC Systems, we have set LD_AUDIT at system boot time, so all processes
will be examined by RootCause as they launch, to ensure its robustness and low
overhead. But you can limit the scope of RootCause by limiting the scope of
where the LD_AUDIT environment variable is set, even though the overhead
imposed by this checking is small.

For Solaris 7 and higher, the LD_AUDIT_64 environment variable may also be
set to point at a dummy 64-bit library so that the runtime linker does not issue
warning messages. This library does not invoke RootCause because 64-bit appli-
cations are currently not supported.

Notethat the LD_PRELOAD environment variablenist used by RootCause on
Solaris.

The LD_PRELOAD environment variable is recognized byltinex operating
system and is used by RootCause to hook into applications that are registered by
RootCause. The command®tcause_on androotcause_off will set and

unset the LD_PRELOAD environment variable for RootCause.

The RootCause setup script does not set the LD_PRELOAD environment vari-
able, so you will need to executeotcause_on after the setup script to actually
cause RootCause to start examining each new process for probing.
LD_PRELOAD is a normal Linux environment variable with the usual semantics
about being inherited by sub-processes, etc. You can limit the scope of Root-
Cause by limiting the scope of where the LD_PRELOAD environment variable is
set, even though the overhead imposed by this checking is small.

Notethat LD_PRELOAD may be used by other tools or even your own applica-
tion. In such cases you must take care in updating this variable: contact OC Sys-
tems for assistance in this case.

For Solaris 7 and higher, the LD_AUDIT_64 environment variable may also be
set to point at a dummy 64-bit library so that the runtime linker does not issue
warning messages. This library does not invoke RootCause because 64-bit appli-
cations are currently not supported.

RootCause Files and Environment Variables 7-7

Environment Variables

AP_ROOTCAUSE_ENABLED (AIX)

RC_WORKSPACE_LOC

AIX has no mechanism corresponding to LD_AUDIT or LD_PRELOAD that
allows libraries to be specified at load time, and hence one cannot just set an envi-
ronment variable to start intercepting processes on AlX. Instead, one identifies a
program that one may want to intercept, renames the program executable, and
replaces it with a script calledn_with_apaudit , as described itEnabling
RootCause for an AIX Application” on page 4-%his script recognizes the
AP_ROOTCAUSE_ENABLED environment variable, which is defined by the
rootcause_on alias and unset by theotcause_off alias.

When an application isun with rootcause oand isregisteed with aworkspace

the location of that workspace is defined in the environment variable
RC_WORKSPACE_LOC prior to the application being run with aprobe. This
allows one to use this environment variable to references files in aprobe options
or within custom probes. This is especially useful in specifying the location of
the configuration file needed by a user-defined UAL irhebe Parameters

field of theAdd UAL Dialog. This environment variable is also defined when
data is formatted, and so can be usedigformat Parameteras well.

RC_SHORT_WORKSPACE_LOC

If the path to your workspace may contain blanks (such as is common on Win-
dows platforms), you should use the RC_SHORT_WORKSPACE_LOC environ-
ment variable instead of tiRC_WORKSPACE_LOC

7-8

RootCause Files and Environment Variables

CHAPTER 8 RootCause GUI
Reference

This chapter describes all parts of the Rootcause Console Graphical User Inter-
face, or the “RootCause GUI” for short. It is meant to serve as a reference to sup-
plement the text provided by the Help buttons on the windows themselves.

Workspace Browser TheWorkspace Browsés the main window of the RootCause GUI. The Work-
space Browser controls the program tracing process.

The Workspace Browser is composed of the following parts:
» theWorkspace Treen the left side;

» theMessage Panen the right side;

» the menu bar across the top; and

* theToolbarbelow the menu bar.

Workspace Tree TheWorkspace Tredisplays information about the current workspace. There are
three sections to this treerogram nodeUALSs nodeandData node A Work-
space Tree Popup Merisiprovided to perform operations on nodes in the Work-
space Tree.

8-1

Workspace Browser

Workspace Tree Popup Menu

Select a node in the Workspace Tree and use the right mouse button (MB3) to
display a popup menu. The following operations from the Workspace and Setup
menus are provided, depending on the node selected:

* Workspace MenuReset Dynamic Module
* Workspace MenuDelete Dynamic Module
» Setup MenuEdit UAL

e Setup MenuRemove UAL

Program node

The program configuration is displayed under the Program node. This includes
the main program and any dynamic modules used by the program as specified by
the user usingdd Dynamic Modulé& theWorkspace Menu

UALSs node

The configuration of user action libraries (UALS) is displayed under the UALs
node. The trace predefined UAL is always present, and other predefined UALs
are displayed depending upon the local configuration. Each can be selected by
checking the box to the left of the UAL name, and disabled by clearing the
checkbox.

NOTE: aBuild operation is required to apply the changes made to the UALS tree.

The predefined UALSs are program-wide actions that can be optionally applied by
clicking the checkbox next to the name. Additional predefined UALs may be
written and added witBetup->Add UAL or by directly editing the file
$APROBE/ual_lib/predefined_uals

log_env:Use thdog_envpredefined UAL to collect information about the envi-
ronment in which the program is running. This information includes environment
variables, the current user and machine, and other information. This information
will appear in théProgram Information Panef theTrace Displaywindow.

exceptions:Enable theexceptiongpredefined UAL to trace C++ (and Ada)
exceptions that occur in the program. These will show up as exception events in
theTrace Index Dialogand a fulltracebackwill appear in théevent Details

Paneof the Trace Display window.

8-2

RootCause GUI Reference

Workspace Browser

Message Pane

Workspace Menu

java_exceptions:Enable thgava_exceptionpredefined UAL to trace Java
exceptions that occur in the program. These will show up as exception events in
theTrace Index Dialogand a fulltracebackwill appear in théevent Details

Paneof the Trace Display window. In addition, some Java run-time exceptions
will cause asnapshoto be taken as well. The actions associated with specific
Java exceptions may be specified usinglthe Exceptions Configuration Dia-

log.

verify: Enable the verify predefined UAL to verify the traced modules are the
same between run-time and format-time. This introduces some startup overhead,
but is recommended when deploying a workspace for use in a different environ-
ment. SeéDeploying A RootCause Workspace" on page 6-2

sigsegv:Thesigsegwpredefined UAL, enabled by default, logs a traceback when
one of several program-termination signals occurs: SIGQUIT, SIGILL,
SIGABRT, SIGBUS, SIGSEGYV, or SIGTERM. The traceback will appear int he
Event Details Panef the Trace Display window.

Data node

The most recer®rocess Data Seare shown under tiizata nodein theWork-
space Treemost-recent-first. Double-clicking on a PROCESS DATA node will
open and update tliegace Index Dialodor that data.

Data is recorded when the program registered with the current workspace is

with rootcause onThe data is organized per-process inferacess Data Seand

is identified by the process id. By default, only the two most recent data sets are
kept; older ones are deleted. More data may be preserved by increasing the value
labeled Keep logged data for N previous processeshe RootCause Options
Tabtab of Options Dialog opened from tBetup Menu

TheMessage Pandisplays information about the operations performed on the
workspace. A popup menu is accessible (via the right mouse button) in the mes-
sage pane, and provides access to the operationskulitidenu

TheWorkspace Menis the leftmost menu in the Workspace Browser window
and contains many fundamental operations.

RootCause GUI Reference 8-3

Workspace Browser

New: You must have avorkspacdo begin work tracing a program. A single pro-
gram is associated with each workspace. You can create a new workspace using
New First the current workspace will be saved, if it has been changed but not yet
saved. ThéNew Workspace Dialogllows you to set the name and location of the
workspace and set the program associated with the workspace.

Open: The user can work with an existing workspace by chodSjpen First

the current workspace will be saved, if it has been changed but not yet saved.
Then the user can choose an existing workspace and it will be loaded and the user
can resume from where the workspace was last saved.

Save:The current workspace can be saved, if it has been modified, by choosing
Save All information about the program configuration and traces will be saved.

Save As:The current workspace can be renamed by cho&sng AsThe user

will choose the new name of the workspace, and it will be saved to the workspace
file. The new workspaaaust be rebuiltising theBuild operation before it can

be accessed by a running program. If a workspace file with the chosen name
already exists, the user will be asked if the file should be overwritten. The user
can cancel the operation or proceed to overwrite the existing workspace file.

Close: ChooseCloseto close the workspace without exiting RootCause. You will
be asked if you want to save the workspace, if it is needed.

Recent WorkspacesThe most recently visited workspaces can be opened by
choosing them from thRecent Workspacesibmenu. The chosen workspace
will be loaded and work can resume from where the workspace was last saved.

Open RootCause LogTheRootCause Logan be examined by choosi@pen
RootCause Lagrhe RootCause log records which programs have been started
and which have been traced since RootCause was enabled. This can be a good
starting point for determining which programs should be traced in a large, multi-
program application suite.

Decollect Collected:ChooseDecollect Collectedo unpack the data collected on

a remote computer (after a deploy operation). The decollected data will consist of
one or more workspaces of data. This will openDReollect Data Dialogo

choose the source (.clct) file and destination (.dclct) directory. Upon successful
completion, arace Index Dialods opened to index the newest data within the
decollection

8-4

RootCause GUI Reference

Workspace Browser

Open Decollection:Decollected workspaces, which have been collected from a
remote computer, can be examined usdpgn DecollectionThe user will

choose alecollection which was produced by a previdDecollect Collected
operation, and &race Index Dialogvill be opened.

Recent DecollectionsThe most recently visited decollections can be opened by
choosing them from thRecent Decollectiorsubmenu. ATrace Index Dialods
opened to index the newest data withindkeollection

List RootCause Registry:The RootCause registry defines what workspaces
apply to which applications. You can list the current contents of the RootCause
registry withList RootCause Registry

Register Program: The current workspace can tegisteed with its corre-
sponding program or class usiRggister Program

Unregister Program: You can remove the RootCausgistryentry for the cur-
rent workspace/program withnregister Program

Reset Program:You can reset the program associated with a workspace if it has
been rebuilt, or its location has changed. Chdeseset Progranto select the new
version of the program. When the program is reset, the existing trace setup will
be checked against the new version, and any invalid traces will be discarded.
Traces are invalid if the method/data no longer exists in the program.

Add Dynamic Module: Any number of runtime-loadediynamic moduke can

be added to the program configuration by choositd Dynamic ModuleThe

user will then select the dynamic module through a file chooser dialog. If this
module is not already part of the program configuration it will be added to the
program configuration and displayed in the workspace tree. You can choose
either a class file or JAR file to be the program. You can add other class files or
JAR files as dynamic modules. If you have a C++ license also, you can also add
shared libraries to trace JNI calls as well.

Reset Dynamic Module:You can reset a dynamic module associated with a
workspace if it has been rebuilt, or its location has changed. Select a dynamic
module in the workspace tree then cho@eset Dynamic Module select the

new version of the module. When a module is reset, the existing trace setup will
be checked against the new version, and any invalid traces will be discarded.
Traces are invalid if the method/data no longer exists in the module.

RootCause GUI Reference 8-5

Workspace Browser

Edit Menu

Setup Menu

Delete Dynamic Module: You can remove a dynamic module associated with a
workspace by selecting a dynamic module in the workspace tree and choosing
Delete Dynamic ModuléVhen a module is deleted any traces within the module
will be lost.

Update J2EE Modules:You can add or change the J2EE modules associated
with a workspace witlupdate J2EE Modules This pops up a File Chooser dia-
log with which you enter the directory where deployable Enterprise Java Bean
(EJB) and Servlet classes and jars reside. If you've already specified a path, this
will cause that to be re-read and the list of Java modules updatéiR@@xe

Cause J2EE Support" on page 10tddmore information.

Exit: ChooseExit to terminate the RootCause GUI. You will be asked if you
want to save the workspace, if it is needed.

The Edit Menusupports Copy/Cut/Paste/Delete from the Message pane. If you
are using RootCause on a version of Solaris less than 8, the Copy operation here
is the only way to copy text from the Message window. If you are using Solaris 8,
the normal mouse copy/paste operations work directly. These operations are also
available on a popup (context) menu by right-clicking within the Messages win-
dow.

Cut: ChooseCutto cut the selected text from the message pane and copy it to the
system clipboard.

Copy: ChooseCopyto copy the selected text from the message pane to the sys-
tem clipboard.

Paste:ChoosePasteto paste text from the system clipboard into the message
pane at the current cursor position.

Delete: ChooseDeleteto delete the selected text from the message pane.

Once you have chosen a workspace and defined the program configuration, you
can use the items in tfg&etup Mento set up options.

Trace UAL: Chooselrace UALto set up options to control the predefined trace

UAL. This is the primary means for tracing program execution. This will open
theTrace Setup Dialog

8-6

RootCause GUI Reference

Workspace Browser

Execute Menu

Add UAL: ChooseAdd UALto add a new UAL to the workspace. This allows
you to add your own “predefined” UALSs to a workspace and control their config-
uration. This will open thédd UAL Dialog

Edit UAL: ChooseEdit UALto edit parameters or other configuration associated
with the selected UAL. (This is insensitive unless a UAL is selected.) This will
open the UAL-specific configuration dialog, such asliteze Setup Dialogr

Java Exceptions Configuration Dialpgr else the default dialog which simply
allows UAL parameters to be specified when the UAL is used by aprobe and
apformat. Note that the “-p” argument that is used to indicate parameters for a
UAL shouldnot be specified here.

Remove UAL: ChooseRemove UAlto remove a UAL from the list displayed
under theJALs node This item is insensitive if no UAL is selected, or if the
selected UAL is predefined.

Build: ChooseBuild to compile the trace setup into a UAL in preparation for
running the program locally or deploying the trace to a remote computer.

Options: ChooseOptionsto open thérootCause Options Dialogrom which
most workspace configuration items are selected.

Source Path:ChooseSource Pathio set up the search path used to find source
files in the Trace Setup and Trace Display windows. Source files will be dis-
played when you define a trace, and also when you view logged trace events.
This will open theEdit Source Path Dialag

Class Path:Choose Class Path to set up the class path for Java program. This
will define where the Java Virtual Machine (JVM) searches for class and JAR
files. The class path is used only for Java programs. This will opeBdieClass
Path Dialog

JRE Path: Choose]RE Pathto set up the path to the Java Runtime Environment.
This determines which Java Virtual Machine will be used to run your Java pro-
gram when run from the Execute menu within RootCause. The JRE path is used
only for Java programs. This will open th&va Path Dialog

Once you have set up the traces you want for your program you can use items in
the Execute Mento define other aprobe options, and run the program with the
traces.

RootCause GUI Reference 8-7

Workspace Browser

Run Program: ChooseRun Programnto run the program on thecal computer

(the same computer running the RootCause GUI) with the defined traces. This
option is useful when developing traces on the local computer. Registered pro-
grams can be run outside of RootCause from the command-line or from a script
or batch file, but this may be more convenient. This will opeRtireProgram
Dialog.

Deploy Program : ChooseDeploy Progranto deploy the current set of traces to
aremotecomputer where the RootCause Agent is installed. The traces and

options selected in the current workspace will be packaged up to be sent to the
remote computer. This will open teploy Dialog

Analyze Menu Once you have run your program with the traces you specified, you can analyze
the logged data.

Index Process DataChoosdndex Process Dat build an index for the most
recently logged data in the workspace. This will operTtlage Index Dialog

Examine Process DataChooseExamine Process Data examine the most
recently logged data in the workspace. This will operTtlaee Data Dialog

Help Menu Use theHelp Menuto figure out what is going on and how to get things done.

Toolbar Use theToolbarto access common menu items quickly.
Setup: ChooseSetupto set up traces. This will open theace Setup Dialog

Build: ChooseBuild to compile the trace setup in preparation for running the
program locally or deploying the traces to a remote computer.

Run: ChooseRunto run the program locally. This will open tRen Program
Dialog. Registered programs can be run outside of RootCause from the com-
mand-line or from a script or batch file, but this may be more convenient.

Deploy: ChooseDeployto deploy the traces to a remote computer. This will
open theDeploy Dialog

8-8 RootCause GUI Reference

New Workspace Dialog

New Workspace
Dialog

Java Workspace

Decollect: ChooseDecollectto unpack data collected from a remote computer.
This will open theDecollect Data Dialog

Index: Choosdndexto build an index for the most recently logged data in the
workspace. This will open thErace Index Dialog

Examine: ChooseExamineto examine the most recently logged data in the
workspace. This will open thErace Data Dialog

TheNew Workspace Dialogermits the user to create a newsrkspaceA single

Java file is associated with each workspace. If you have a license for both Java
and C++, two tabs will be visible; select the tab corresponding to the kind of
workspace needed. This user’s guide describes only the Java workspace.

The Java file name can be entered in the text field labeled Java File or can be
selected using the “...” button to the right of the text field. The Java file can be
eitheraJavaclass orjar file.Ifa.jar fileis selected, the main class name

must be specified if it cannot be determined from the manifest.

The workspace name can be entered in the text field labeled Workspace File or
can be selected using the “...” button to the right of the text field. If the user
selects a workspace name that is an existing file, the will prompt for permission
to overwrite the file. A default workspace name will be chosen based on the Java
file or class name and the current working directory at the time RootCause was
started.

The main class name can be entered in the text field labeled Class Name. The
main class must exist in thjar ~ file. If the jar file contains a manifest, the
main class will default to the one specified by the manifest.

The class path can be specified in the Class Path text field or it can be edited
using the “...” button to the right of the text field. This will open the Class Path
Dialog to edit the path. The class path value will be used to find the specified Java
class if no Java file name is specified.

The JRE path can be specified in the JRE Path text field or it can be edited using
the “...” button to the right of the text field. This will open the Java Path Dialog to
select the path. The JRE path value will be used to find the Java Virtual Machine
to run the Java program.

RootCause GUI Reference 8-9

Reset Program Dialog

Reset Program Dialog

The Working Directory field indicates the current directory when the java com-
mand was run. This is needed in order to correctly evaluate relative path names
in the Class Path.

The J2EE Server Directory can be entered or browsed to using the “...” button to
the right of the text field. Enter the directory where deployable Enterprise Java
Bean (EJB) and Servlet classes and jars reside. RootCause will automatically add
EJB and Servlet classes and jars that are specified in any J2EE compliant XML
deployment descriptors. For more information $8eotCause J2EE Support” on
page 10-14

Buttons

Once valid workspace parameters have been selected, cliothatton to cre-
ate the workspace. Use tlimncelbutton to dismiss the dialog without creating a
new workspace. Use tlelp button to figure out what is going on and how to
get things done.

TheReset Program Dialogermits the user to reset the program associated with

a workspace when the program is rebuilt or moved to a new location. The work-
space will reconcile the changes to the program with the trace setup selected, dis-
card any invalid trace options, and define the program which will be traced. A
single program is associated with each workspace.

Program File: The program name can be entered in the text field labeted
gram Fileor can be selected using the “...” button to the right of the text field. The
program must exist and must have execute permission. The field will be initial-
ized with the current program.

Main Class: If the program is a Java JAR file, the main class must be specified.
The main class name can be entered in the text field labeled Main Class. The
main class must exist in the JAR file. The field will be initialized with the current
main class.

Buttons

Once a valid Java main class has been selected cli€i<dHritton to reset the
program. Use th€ancelbutton to dismiss the dialog without resetting the pro-
gram. Use thélelp button to figure out what is going on and how to get things
done.

8-10

RootCause GUI Reference

Add UAL Dialog

Add UAL Dialog

TheAdd Ual Dialogconfigures a user-definétAL and adds it to the workspace.
SelectAdd UALfrom theSetup Menumenu to open this dialog. Once a UAL is
added to the workspace it can be enabled and disabled via the checkbox, and
other options can be specified by double-clicking on it to opet AeOptions
Dialog.

Note: This is an advanced feature, and users are encouraged to contact OC Sys-
tems for support.

Plug-In Class:If the UAL to be added requires a separate interface for configu-
ration and operation within RootCause, that Java class name should be specified
in the text field labele®lug-in Class Most UALs will not require a special inter-

face and this field can be left blank. Thava Exceptions Configuration Dialdg

an example of such a plug-in class.

UAL File: Specify the file (path) containing the UAL in the text field labeled
UAL File. This identifies the actual UAL to be added to the workspace.

Name of UAL: Specify the name to use to display the UAL in the workspace tree
in the text field labeletlame of UALNormally this will match the UAL file
name.

UAL Description: Specify a brief description of the UAL in the text field labeled
UAL Description This will also be displayed in the workspace tree. This descrip-
tion may highlight any special configuration of the UAL.

Copy UAL: Check the box labeledopy UALto copy the UAL to the work-
space. This is the recommended method of ensuring the UAL is available on a
remote computer if the workspace is deployed.

Requires Trace UAL: Check the box labeledequires Trace UAIf the new
UAL requires that the Trace UAL be active when it is active.

Aprobe Parameters: Specify the string to follow the “-p” option after thiAL
File on the aprobe command-line. Do not include the “-p” itself. For example, to
specify a configuration file in the workspace, you might enter:

-c$ RC_WORKSPACE_Lfe@ents.cfg

Apformat Parameters: Specify the string to follow the “-p” option after the
UAL File on the apformat command-line. Do not include the “-p” itself. You can

RootCause GUI Reference 8-11

RootCause Options Dialog

RootCause Options
Dialog

RootCause Options Tab

refer to files in the workspace itself with tRE_WORKSPACE_LOnviron-
ment variables.

Buttons

Use theOK button to add the new UAL as specified. UseGhacelbutton to
abandon the operation. Use thelp button to figure out what is going on and
how to get things done.

The Optionsitem in theSetup Menwpens thé&kootCause Options Dialofrom
which most options for building, running, formatting and displaying your traces
are specified. It consists of a number of tabs, buRti@Cause Options Tab
shown initially, shows most of the items of interest.

Buttons

Use theOK button to accept all changes to the RootCause options. USarhe
cel button to discard any changes to the RootCause options. Udelfiautton
to figure out what is going on and how to get things done.

The RootCause Options Tab is used to define a number of values that control the
collection and display of that trace data.

Data Collection Options

The following options control data collection at the time the program is run.
These are recorded per-workspace and translate into options on the aprobe com-
mand-line, set using th&probe Options Tab

Keep logged data for N previous processeSet the maximum number of pre-
vious or concurrent processes for which data is kept by modifying the text field
labeledKeep logged data for N previous processekhis controls for how many
previous processes logged data files are retained. Larger values will use more
disk space. This value must be 1 or greater, resulting in two process’s data being
saved: the most recent run and one previous to that.

Data File Size:Set the maximum data file size by modifying Begta File Size
text field. This controls how large each data file can become while logging before
a new data file is created. Smaller values will lead to faster times to display data,

8-12

RootCause GUI Reference

RootCause Options Dialog

and allow more control over the amount of data to be viewed at one time, but
limit the size of tables and other monolithic data items logged by some probes.

Wraparound data logging wraps at N:Set the maximum size of wrap-around

data kept in data files by modifying the text field lab&Mm@paround data log-

ging wraps at NThis controls how much data is kept in the wrap-around data
files. Larger values will use more disk space. This number, divided by the Data
File Size specified, yields the number of data files kept inAR®"ring’ in the
absence of snapshots. This corresponds to the aprobe -n argument specified in the
Number of APD File§ield in theAprobe Options Tab

Total logged data limit per processSet the maximum size of all logged data in
data files and snapshot files by modifying the text field labétedl logged data
limit per processThis controls the total amount of logged data that is retained in
wrap-around data files plus older data files preserved as a resshagishot
action. Larger values will user more disk space.

Data Display Options

The following options control the display of data thoughThece Index Dialog
and theTrace Display These options are saved as preferences on a per-user
basis.

Maximum number of items in Trace Index: Set the maximum number of
items allowed in th@race Index Dialodoy modifying the text field labeleMax-
imum number of items in Trace Ind&arger values will lead to longer times to
build an index.

Maximum number of events in Trace Display:Set the maximum number of
events allowed in the Trace Display event tree by modifying the text field labeled
Maximum number of events in Trace Displagrger values will lead to longer
times to display event trees.

Display N data files before selected3et the number of data files displayed

before an event selected in thece Index Dialodpy modifying the text field
labeledDisplay N data files before selectéthis controls how many events are
displayed before the selected event. Larger values will lead to longer times to dis-
play data.

Display N data files after selectedSet the number of data files displayed
before an event selected in thece Index Dialodpy modifying the text field

RootCause GUI Reference 8-13

RootCause Options Dialog

Build Options Tab

Aprobe Options Tab

labeledDisplay N data files after selectethis controls how many events are
displayed after the selected event. Larger values will lead to longer times to dis-
play data.

The Build Options Tabin theRootCause Options Dialdg used to set options
that control how Apc files are compiled and to include additional custom Apc
files. Note: these options do not apply to Java-only workspaces.

The Aprobe Options Taks used to set options that control how Aprobe collects
data from the defined traces.

APD File: Choose the name of the APD file where Aprobe collects data in the
APD Filetext field. Any path and name ending in “.apd” can be specified here,
and the APD files will be created with that name. Note that this path is ignored
for remote (deployed) workspaces. This corresponds to the apdatygtion.

Number of APD Files: Set the number of APD files that will be chained
together to hold trace information in tNember of APD Filesext field. Using
multiple files prevents any one file from becoming too large. As each APD file
fills up itis closed and a new one is opened. If the maximum number of files have
been created, the oldest one is deleted. ThisAP&nhring. You may select 1 or
more files. This corresponds to the apreheoption.

Size of APD Files:Set the maximum size in bytes of the APD files in 8ige of
APD Filestext field. This value can be used to restrict the amount of information
saved in each file. You can select any size from 1MB to 256MB. This corre-
sponds to the aprobe option.

Number of APD Rings: Specify the number of APD file rings be preserveth
theNumber of APD Ringtext field. The number of APD rings determines how
manyProcess Data Seare preserved for the programaddition tothe most

recent. You need one set of rings for each simultaneous program execution you
want to trace, with a minimum of 1. This corresponds to the api#ologtion.

Number of Snapshot FilesSpecify the number of snapshot data files in the
Number of Snapshot Files text field. This value determines how many snapshot
files are kept for hte program in addition to the wraparound APD files This cor-
responds to the aprobe option.

8-14

RootCause GUI Reference

RootCause Options Dialog

Apformat Options Tab

Run Options Tab

Source Options Tab

Additional Aprobe Options: Specify any additional options in tihelditional
Aprobe Optiongdext field, just as you would on the Aprobe command line. The
most commonly needed one “-gstack_size=1000000” to increase the Aprobe
stack size.

The Apformat Options Tals used to set options that control how dghtrmat
command formats data collected from the defined traces and probes.

Additional Apformat Options: Specify any additional options in thedditional
Apformat Optiongext field, just as you would on the Apformat command line.

The Run Options Taim theRootCause Options Dialdg used to set options
required to run the program on the local computer usingtimeProgrammenu

item or theRunbutton. These options are ignored unless your application is run
directly from the RootCause GUI.

Working Directory: Set the path of the working directory where the program
should run in th&\orking Directorytext field. This also specifies the directory
from which the load modules are evaluated.

Command To Invoke Program: This is the main class name that will appear on
the Java commandp not change itlf you need to run the program with some-

thing other than the “java” command you cannot use the Run button or menu
item.

Program Parameters:Specify any program parameters in fgram Parame-
terstext field, just as you would on the command line.

Java Parameters:Specify any parameters to the Java Virtual Machine (JVM) in
theJava Parametertext field as you would on the command line.

The Source Options Tals used to set options that control how missing source
files are handled in the Trace Setup and Trace Display dialogs.

Don’'t Prompt for Source Files: Check theDon’t Prompt for Source Filekox
to specify that actions in thigace Setup DialogndTrace Displaywindow are
to ignore missing source files. This setting is also available in the source file

RootCause GUI Reference 8-15

Edit Source Path Dialog

Edit Source Path
Dialog

Edit Class Path Dialog

prompt dialog itself. You may find source files later usind-ihd Source File
menu item.

TheEdit Source Path Dialogs opened by thBource Pattitem in theSetup

Meny and allows the user to edit the path used to search for source files. Source
files are displayed in thErace Setup DialogndTrace Displayto provide con-

text information when selecting traces and viewing trace events.

The list displays, in order, the directories searched for source files if the full path
recorded in the object or class file is not found.

Buttons

Add: Use theAddbutton to add a new path before the selected one. A file
chooser will open to select the path.

Move Up: Use theMove Upbutton to move the selected path ahead of the path
above it.

Move Down: Use theMove Dowrbutton to move the selected path behind the
path below it

Remove:Use theRemovebutton to remove the currently selected path.

Use theOK button to accept the changes to the source path. USatieelbut-
ton to discard any changes to the source path. Uséelipdutton to figure out
what is going on and how to get things done.

TheEdit Class Path Dialods opened by th€lass Pathitem in theSetup Menu
and allows the user to edit the path searched for classes foundiatleeDis-
play events, and also when running Java usingrilnegbutton.

The list displays, in order, the directories and/or JAR files that are searched by
RootCause or th&VM itself.

Buttons

Add: Use theAddbutton to add a new path before the selected one. A file
chooser will open to select the path.

8-16

RootCause GUI Reference

Java Path Dialog

Java Path Dialog

UAL Options Dialog

Move Up: Use theMove Upbutton to move the selected path ahead of the path
above it.

Move Down: Use theMove Downrbutton to move the selected path behind the
path below it

Remove:Use theRemoveéutton to remove the currently selected path.

Use theOK button to accept the changes to the class path. Us@aheelbutton
to discard any changes to the class path. Usél#ip button to figure out what is
going on and how to get things done.

The Java Path Dialogs opened by théRE Pathitem in theSetup Menuand
edits the path to the Java Runtime Environm&RE(used to execute Java pro-
grams.

Type the full path to the JRE root directory in the text field labeled JRE Path, or

[T]

use the “...” button to open a file chooser to select the path.
Buttons

Use theOK button to accept the changes to the JRE path. Usgsateelbutton
to discard any changes to the JRE path. UseéHtbip button to figure out what is
going on and how to get things done.

The UAL Options Dialogs opened by thEdit UAL item in theSetup Menuor
Workspace Tree Workspace Tree Popup Memby double-clicking on a name
in theUALs nodenode in the Workspace Tree.

This is the “default UAL plug-in” for UALs added usingdd UAL. It lets you set
options forUAL s associated with the workspace. It is overridden by more pow-
erful configuration dialogs for the trace gada_exceptiont/ALs. Contact OC
Systems for more information on writing interfaces for UALs.

The UAL file and name are displayed in the text fields lab&lédl File andUAL
Name These values cannot be changed.

If a UAL requires command-line parameters at Aprobe-time or Apformat-time,
you can change those values in the text fields lal¥ghesbe Parameterand

RootCause GUI Reference 8-17

Java Exceptions Configuration Dialog

Java Exceptions
Configuration Dialog

Apformat ParametersThe “-p” option used on the aprobe and apformat com-
mand-line to introduce UAL arguments should not be specified here.

Buttons

Use theOK button to set the Ual options as specified. Us&tmcelbutton to
abandon the operation. Use thelp button to figure out what is going on and
how to get things done.

Thejava_exceptionpredefined UAL in thé&Vorkspace Tremcludes a “configu-
ration plug-in” interface which allows the user to change the default actions asso-
ciated with Java exceptions when the Java Exceptions UAL is enabled. This
dialog is opened by double-clicking on jhea_exceptions label, or select-

ing Edit UAL from theWorkspace Tree Popup MenutheSetup Menu

There are two levels of exception reporting provided, “Logging” and “Snap-
shots”.

When an exception is Logged, an Exception event and traceback is logged which
appears in th&race Index Dialogf Exception events are selected in Bedect
Events Dialogand an Exception marker appears inTreece Display

When an exception Snapshot is taken, in addition to the simple event logged, a
shapshoevent is created, which also appears inTitaee Index Dialog

By default, all user-defined exceptions are Logged. In addition, common Java
Runtime and RMI exceptions have Snapshots taken by default.

TheJava Exceptions Configuration Dial@adlows changing these defaults. There
are two main panes in the dialog, one for Logging and one for Snapshots.

Logging Exceptions:Within theLogging Exceptionpane, exceptions can be
excluded from logging by adding the full Java exception class name on a separate
line of the multi-line text field.

Exception SnapshotsWithin the Exception Snapshofmne, there are three sub-
panes:

Default: The first, labeledefault, allows turning on or off of snapshots for
Runtime and RMI exceptions. The default is “on” (checked) for both types.

8-18

RootCause GUI Reference

Run Program Dialog

Run Program Dialog

Deploy Dialog

Include: The second sub-pane under Exception Snapshots is |abeliede

which allows the addition of individual exception classes for which a snapshot is
to be taken. Specify the full name of each exception to be included on a separate
line.

Exclude: Finally, theExcludesub-pane identifies individual exception classes
for which a snapshot isotto be taken. Specify the full name of each exception
to be excluded on a separate line.

Buttons

Use theOK button to update the configuration to be applied to the next run of the
program. Use th€ancelbutton to abandon any changes to the workspace
options.

Note No configuration dialog is available ferceptiongue to the much more
limited use of exceptions in C++. However this plug-in mechanism is designed
to allow site-specific configuration and extension. Contact OC Systems for more
information about such customizations.

TheRun Program Dialods shown by th&unbutton (theRun Progranopera-

tion) to run a traced program on the local computer. This is provided as a conve-
nience for running simple programs. Programs that require special start-up
scripts or batch files can be run from the command line in a normal fashion (as
long as they have been registered with a RootCause workspace for tracing). The
working directory, program path, and program parameters (as specified in the
Program Options Dialog) are displayed.

Choose théutoload Outputheckbox to automatically operteace Data Dia-
log upon program termination to format and display the trace data.

Buttons
Use theOK button to run the program as specified. UseCthecelbutton to

abandon running the program. Use Hhelp button to figure out what is going on
and how to get things done.

The Deploy Dialogis opened by thBeploybutton (theDeploy Programopera-
tion) to deploy the traces for a program to a remote computer so the program can

RootCause GUI Reference 8-19

Deploy Dialog

be traced there. The dialog allows the user to select some final options, and to
review other options.

Output file: Type the path name of the output file to be created in the text field
labeledOutput fileor select a path using the “...” button. This is the file that must
be transmitted to the remote computer for installation.

License file: Type the path name of the license file to be used in the text field
labeledLicense fileor select a path using the “...” button. This is normally
$APROBE/licenses/agent_license.dat

If the License file does not have the proper name or cannot be found an error is
given and the user must provide a satisfactory file. If the file does not contain a
valid license, an error is given but the user may continue and create a deploy
package, but then a license must be provided at the remote site.

Aprobe Options: Use theAprobe Optiongab to inspect the Aprobe options that
will be used. If they are not correct, go back to tReotCause Options Dialdg
change them.

Program Options: Use theProgram Optiongab to verify the default path to the
program with which the workspace is associated. The name of the program file is
not referenced in the remote environment, but the name of the main class within
it must be the same

UALs: Use theUALstab to inspect which UALs will be activated when the pro-
gram is traced. If they are not correct, go back tdtAkes nodenode in the
Workspace Treef the main window to change them.

ADI Files: Use theADI Filestab to select for which modules you want to gener-
ate Aprobe debug information (ADI) files. Only compiled modules are listed here
-- none are needed for Java.

Buttons
Use theOK button to create the deploy file from the given parameters. Use the

Cancelbutton to abandon the deploy operation. UseHleép button to figure out
what is going on and how to get things done.

8-20

RootCause GUI Reference

Decollect Data Dialog

Decollect Data Dialog

Trace Setup Dialog

Program Contents Tree

The Decollect Data Dialogs opened by th®ecollectbutton (theDecollect Col-
lectedoperation) to unpack data collected on a remote computer for examination
on the local computer.

When the operation completes,@pen Decollectioms automatically done on
the newly created directory to allow the data to be formatted and viewed.

Collect File: Type the path name of the collect file to unpack inGbhect File
text field or use the “..." button to open a file chooser to select the file. This is the
file that was created by a collect operation on the remote computer and transmit-

ted to the local computer.

Destination To Create: Type the path name of the destination directory to be
created in th®estination To Creatéext field or select a path using the “..." but-
ton. This is the directory that becomes deeollectiornthat will contain the
unpacked data on the local computer.

Buttons

Use theOK button to unpack the collect file to the chosen destination. Use the
Cancelbutton to abandon the decollect operation. Usélgip button to figure
out what is going on and how to get things done.

TheTrace Setup Dialogs used to set up traces and probes for the program. It
consists of three parts: tReogram Contents Treen the left, th&Source Pane
on the upper right, and théariables PaneandProbes Panes tabs on the lower
right. The following sections describe each of these in more detail.

TheProgram Contents Tregisplays the currently selected traces for the pro-
gram. At the root is the program node. Under this node are the libraiges (
ules) against which the program has been linked. Additidpiahmic module
that have been explicitly added to the workspace usiftgDynamic Moduldn
the mainWorkspace Menwvill also appear.

Nodes with child nodes beneath them are have a “lever” next to that node. Click-
ing on a “lever” next to a node in the tree, or double-clicking on node’s label, will
expand it, showing the immediate children of that node. Doing these actions on
an already-expanded node will collapse it, hiding its child nodes. Double-click
also expands or collapses a node.

RootCause GUI Reference 8-21

Trace Setup Dialog

Trace Setup Popup
Menu

Java Program Contents

Java program contents are organized as follows:

P Main Class - the program node based on main class name
M Root Java Module$favas$) - root of all Java methods
J Class Path Element - JAR or directory in classpath
Package Element - e.ggm or sun, if applicable
C Class - a class in the parent JAR/directory/package
m Method in Class

Class Path elements are listed in alphabetical order, not the order the appear in
the classpath. Use thglit Class Path Dialodgo view or change the run-time
order. The Class Path elementist significant in aTrace All Inoperation, only

the package and class names. So selecting the “com” nodepatider

store.jar and clickingTrace All In com will really trace all classes in all
packages that start with com in tlvole applicationnot just those ipet-

store.jar

Static constructor methods have namdmit>() and user-defined construc-
tors are<init>(args)

Black dotsnext to the methods indicate that the method will be tr&led. dots
next to the methods indicate tlationssuch as logging are defined.

Selecting a method node will cause the source to be displayed in the source pane,
if possible. In thé/ariables Panga single checkbox for logging all the parame-
ters will be displayed. The probe triggers and actions associated with the method
will be displayed in th&robes Pane

Operations on nodes in tReogram Contents Trese done via a popup menu.
Select a node in the tree and use the right mouse button (MB3) to display the
popup menu.

Trace This Item: UseTrace This ltento add a trace for the selected method
node.

Don't Trace This Item: UseDon't Trace This Itento remove a trace (black dot)
for the selected method node.

8-22

RootCause GUI Reference

Trace Setup Dialog

Enable Load Shedding for This Item:UseEnable Load Shedding for This Item

to re-enabléoad sheddingthe default action) for the selected method node.

This action is available only when load shedding has been previously disabled, as
indicated by a red dot.

Disable Load Shedding for This Item:UseDisable Load Shedding for This
Itemto disabldoad sheddindor the selected method node. This is generally not
necessary unless the function has a very high execution rate, yet you still want to
trace it, at the risk of slowing the overall trace. Disabling load shedding causes
the item to be marked with a red dot.

Trace All In: UseTrace All In to add a trace for all the child nodes of the
selected module, file, directory or class node.

Note: Any enclosing JAR or directory it significant in alrace All Inopera-
tion, only the package and class names. So selecting the “com” nodepgtder
store.jar and clickingTrace All In com will really trace all classes in all
packages that start with com in tlvBole applicationnot just those ipet-
store.jar

Don't Trace All In: UseDon't Trace All Into remove traces (black dots) for all
the child nodes of the selected module or class node.

Remove Probes For All Child Items:UseRemove Probes For All Child Items

to remove any probes applied to the selected node and all its child nodes. Note
that probes here are those actions indicated by the blue dots, which were added
from theVariables Paner Probes Pane

Trace All Lines in Function: UseTrace All Lines In Functiorio add a trace for
all the lines in the selected method node.

Don’t Trace All Lines in Function: UseDon't Trace All Lines In Functioto
remove traces for all the lines of the selected method.

Edit Wildcards: UseEdit Wildcardsto examine and change the TRACE and
REMOVE directives for the module containing the selected item, usirtgdihe
Wildcard Strings Dialog

Find Function/Method: UseFind Function/Methodo find a function or method
in the program contents tree. This will openfiired In Program Contents Dia-
log. This is the same as thénd button at the bottom of the window.

RootCause GUI Reference 8-23

Trace Setup Dialog

Source Pane

Variables Pane

Probes Pane

Find Source File:UseFind Source Filgo locate the source file for the selected
class or method.

The Source Panelisplays the source file for the currently selected method in the
Program Contents Tred he source for the current method is annotated with line
numbers and checkboxes which indicate which lines can be traced in the method.
Checking a source line will cause the applicable probe triggers and actions to be
displayed in thé>robes Pane

The Variables Panalisplays the parameters that can be logged:

e onentry to a method; or

» on exit from a method.

When a method is selected in tReogram Contents Tre¢heVariablespane will

show that parameters can be logged on entry to a method, which also implies log-
ging the return value on exit.

TheProbes Panelisplays the probes that can triggetions
e onentry to a method; or
» on exit from a method.

When a method is selected in fAmgram Contents Tre¢heProbespane will
show probes activated on entry to or exit from the method.

When the program node in tReogram Contents Tre@enoted by the letté?)
is selected, thProbes Panealisplays probes that can trigger actions:

s on program entry;
* 0N program exit;

* onthread entry; or
* on thread exit.

To define a probe, first check the “On” box on the left to activate it. Then select a
trigger from theProbe Triggeroptions menu.

8-24

RootCause GUI Reference

Trace Setup Dialog

Next select an action from the Probe Action options menu. If the action requires a
parameter, specify it in the Probe Parameter text field or combo box. You can dis-
able a probe by unchecking the On check box associated with the probe.

Probe Actions
The following actions may be selected from the Probe Actions options menu:

Log Comment: Log a string literal at the given Trigger point. The Parameter to
this action is the string to be printed. It will appear as a COMMENT event in the
Event Trace Tree

Log Traceback: Log a stack traceback at the given Trigger point. The Parameter
is the maximum depth to trace back. The overhead of the traceback operation is
proportional to this depth. It will appear as a TRACEBACK node in the Event
Trace Tree.

Log Statistic: Log time or other information specified by the Parameter. The sta-
tistics appear asRrocess Statistiasode in the Event Trace Tree. The Parameter
values are:

e gethrtime(3C) (wall time) - calls the gethrtime() system
function and displays the value returned, the elapsed time since the
start of the program.

e gethrvtime(3C) (CPU time) - calls the gethrvtime() system
function and displays the value returned, the CPU time consumed by
the process.

* rusage(3C) (resource usage) - calls the rusage() system func-
tion, and displays the fields of the structure it returns.

Enable Tracing: Enable tracing that was disabled by an earlier Disable Tracing
action. Has no effect if tracing was already enabled.

Disable Tracing: Disable tracing at the trigger point, to reduce the amount of
data logged. It is useful to use Disable Tracing at the On Entry trigger point of a
method, and Enable Tracing at the On Exit point, or vice versa, to control the
data logged.

Log Snapshot:Cause a datsnapshoto occur at the probe point, which also
logs a SNAPSHOT event. These events are shown ifirtfee Index Dialog
making them very easy to locate even if a lot of data has been logged. The

RootCause GUI Reference 8-25

Find In Program Contents Dialog

Find In Program
Contents Dialog

“Probe Parameter” field is a text field which defaults to
ROOTCAUSE_SNAPSHOT, but which may be replaced with any reasonably
short text string to more uniquely identify the snapshot point.

Buttons

Find: Use theFind button to search the program contents tree for methods of
interest. This will open thEind In Program Contents Dialog

Options: Use theOptionsbutton to select advanced options that affect all traces.
This opens th&lobal Trace Options Dialag

Custom: Use the Custom button to get a template of the probe deployment
descriptor corresponding to your custom Java file. This openSé¢hnerate Cus-
tom XMJ Dialog There is no further automated support for including custom
Java. Se€hapter 11, "Custom Java Prohes”

OK: Use theOK button to build a UAL from the selected trace setup, and then
dismiss théelrace Setup Dialog

Apply: Use theApplybutton to build a UAL from the selected trace setup. The
Trace Setup Dialogyill stay visible.

Dismiss:Use theDismissbutton to close th@&race Setup Dialogvithout build-
ing a UAL from the trace setup.

Help: Use theHelp button to figure out what is going on and how to get things
done.

TheFind In Program Contents Dialogg used to search for methods containing a
specific pattern, or to find a method based on its source file name and line num-
ber.

Find String: When theFind Stringtab is selected, you provide a string that
matches all or part of a method in tReogram Contents Tree’ou must select a
module, class, or method node in the program contents tree to indicate the start of
the search. The next method that contains the given search string will be selected,
or a dialog will indicate that no matches were found.

8-26

RootCause GUI Reference

Global Trace Options Dialog

Global Trace Options
Dialog

Consider Caself Consider Casés selected, the search for the given string will
exactly match the case of letters in the given search string. By default lower and
upper case of the same letter are considered equal.

Search All Modules:If Search All Moduless selected, then all modules will be
searched without asking for confirmation after each one is searched. You can
select alternate starting nodes while the search dialog is visible to direct the
search.

Goto File: TheGoto Filetab is used to search based on a source file name, and
optionally a line number, starting from the first method in the module. You pro-
vide the full or simple name of a file to search for. The name provided is com-
pared to the end of the full pathname of the source file containing each method,
so you must always provide the file extension in your search string.

Line Number: If no Line Numbeiis specified, the first method associated with
the given file is identified. If a Line Number is specified, the method containing
that line in that file is found, if any, or else the method in the file whose start line
is closest to the given line.

Buttons

Use theNextbutton to find the next occurrence of the string in a function or
method node. Use threviousbutton to find the previous occurrence of the
string in a function or method node. Use fRetobutton to find the specified line
number in a file. Use theéancelbutton to dismiss the search dialog. Use the
Help button to figure out what is going on and how to get things done.

The Global Trace Options Dialogs used to set advanced options to control the
trace and logging of data. It is opened by clicking @tionsbutton in theTrace
Setup Dialog

Dereference PointersTheDereference Pointergption determines whether data
whose type is a pointer type has the value of the pointer (the address), or the ref-
erenced data logged. Check the option to log the referenced data.

Log Java Class LoadsThelLog Java Class Loadsption determines whether

each load of a Java class in the application is logged. This is enabled by default,
and adds little overhead, but you may want to disable it if these events aren’t
helpful.

RootCause GUI Reference 8-27

Edit Wildcard Strings Dialog

Edit Wildcard Strings
Dialog

Maximum Logged String Length: The Maximum Logged String Lengtéxt

field determines how many bytes of dereferenced string types are logged. Lower-
ing this value can reduce the amount of data logged and reduce the impact that
tracing has on the program's performance.

Enable Load Shedding:This checkbox indicates whethiead sheddingvill be
enabled on the next trace. The scale and text field underneath this checkbox indi-
cates the relative amount of tracing overhead that should be tolerated before trac-
ing is disabled on a method This is recorded on a per-workspace basis, and is
enabled by default to allow moderate overhead.

Individual methods may be excluded from load shedding using@?®&D_SHED
Tableassociated with a LOAD_SHED node at the end offtlage Display

Buttons

Use theOK button to accept the option values as displayed. Usgaheelbut-
ton to discard any changes and leave the values as they were. U phitton
to figure out what is going on and how to get things done.

The Edit Wildcardsitem on theTrace Setup Popup MerinitheProgram Con-
tents Treebrings up thdedit Wildcard Strings Dialog

The contents of this dialog reflect the Traces selected from within the Trace
Setup popup menu for the currently selected module. The module to which the
dialog contents apply is shown in the dialog title.

Trace Wildcards: The Trace Wildcarddist on the left specifies those methods
that will be traced.

Don't Trace Wildcards: TheDon't Trace Wildcardéist on the right shows those
methods that will be explicitly removed from the list of methods to be traced, so
the final set of traces is the difference between the two lists.

Add: To add a wildcard to a list, enter it in the text field below that list, then click
the Add button.

Update: To replace an existing item with the contents of the text field, select that
item and click théJpdatebutton.

8-28

RootCause GUI Reference

Generate Custom XMJ Dialog

Generate Custom
XMJ Dialog

New Class Dialog

Remove:To remove an item from the list, select that item and cliclRém®ove
button.

More Buttons

Click the OK button to save the lists as shown. Click tbancelbutton to discard
any changes. Click thdelp button to view this text.

The names in the list are “probe names” of the form

"class::method(String)"

There is only one wildcard character, *', and *' may appear only as the first and/
or last character in the wildcard string. The following are examples of valid wild-
cards:

e all methods in the module
M* all methods whose name starts with M

ErrorClass::*
all methods in class ErrorClass

The Generate Custom XMJ Dialog is opened wherCtistombutton at the bot-

tom of the Trace Setup dialog is clicked. It presents a text dialog describing how
to construct a custom probe, including the exact XMJ text applicable to the
selected mehod. Sé&hapter 11, "Custom Java Probé&s"more information.

TheNew Class Dialogs opened when an attempt to find a class in the Trace
Setup dialog fails. Use this dialog to enter the path for class file to be added to the
Trace Setup. You can browse foass and.jar files that match the class
name. If the class name field is already filled in, you will not be able to modify it.

If a matching class file was found in the classpath, it will be automatically dis-
played but you may browse to a different one if necessary.

Buttons
Use theOK button to select the class file. Use @ancelbutton to close the dia-

log without selecting a class file. Use thelp button to figure out what is going
on and how to get things done.

RootCause GUI Reference 8-29

Trace Data Dialog

Trace Data Dialog

Add Process Data
Dialog

TheTrace Data Dialogpermits the user to select the exact data files forbe

maied for display in th@race Display The user can make this choice based on
the data present in each data file, to reduce the total size of the display. Data from
additionalworkspacse can be made available for selection.

Data files available for selection are displayed in the tree labeded Data

Files. Check the checkbox to the left of a node in the tree to select that data file
for formatting and display. Nodes in the tree represent data files collected for pro-
cesses running traced applications,Rle®tCause Lodjle, or adecollecedlog

file.

Buttons

Add Process:Use theAdd Process. button to add the data files collected from
another process running a traced application to the data files tree. This will open
the Add Process Data Dialotp select data files. Once added, the data files can
be selected for format and display.

OK: Once the data files have been chosen, click the OK button to format and dis-
play the data in a nelwace Display

Apply: Click the Applybutton to format and display the data in the original Trace
Display. This is only available when the dialog is opened from a Trace Display.

Cancel: Use the Cancel button to dismiss the dialog.

Help: Use the Help button to figure out what is going on and how to get things
done.

The Add Process Data Dialogermits the user to seléetocess Data Sdtom

either theTrace Data Dialogor Select Data Files DialogA Process Data Setis a
directory containing all data files collected in a single run of an application. The
user can navigate through the file system to select the relevant data sets. Multiple
Data Sets may be available from a single directory because the file chooser
searches the subdirectories of the selected directory recursively.

Look In: The directory to search can be entered in the text field labetddin
or can be selected using the “..." button to the right of the text field.

8-30

RootCause GUI Reference

Trace Index Dialog

Trace Index Dialog

What is Indexed

Process Data SetsThe available data sets will be displayed in the list labeled
Process Data SetSelect a data set by clicking on it.

Process Data SetThe name of the selected data set will be displayed in the text
field labeledProcess Data Set

Buttons

Once a Process Data Set has been chosen, cliektibetton to add the data to
the parent dialog. Use th@ancelbutton to dismiss the chooser. Use tihelp but-
ton to figure out what is going on and how to get things done.

TheTrace Index Dialogermits the user to generate an index for selected data
files.

The index contains special markerens selected by the user. The index can
allow the user to quickly find notable events in large traces and to examine all the
events surrounding the marker in ffrace Display

There is always one event in the index, corresponding to the Last Data Recorded,
and which always appears first since the initial order of events is most-recent
first.

Double-click on an event to immediately open a fieace Displaycontaining
just that event and its context.

Click on an event in the table to select it for display. Use Shift-click to select a
contiguous block of events. Use Ctrl-click to select multiple, non-contiguous
events.

The Trace Index Dialog is opened as a result of a number of different actions,
which generate an index of different data:
1. Indexing Current Workspace Data

When you:

» choosdndex Process Daia theAnalyze Meny or

» click thelndexbutton in the Workspace buttonbar;

you have chosen to display an index for¢herent datain the work-

RootCause GUI Reference 8-31

Trace Index Dialog

Index Columns

space. This wilteplaceany index you have constructed already unless
the data is unchanged from the last time these operations were per-
formed.

2. Indexing Decollected Data

When you choos®pen Decollectiomr Recent Decollectionin the
Workspace Menuan index is built using the most recent data in the de-
collection.

3. Re-Indexing Displayed Data

When you choos@dd From Index To Displayn the Trace Displayrile
Menu, the index associated with the data currently being displayed is
shown. This means that you can save and modify previously constructed
indexes by leaving a corresponding Trace Display window open.

4. Indexing Selected Process Data
When you:

» chooseAdd Selected Process Datethe Trace Displa¥ile Menu
or theTrace Display Popup Menwhen an APP_TRACED eventis
selected); or

» double-click on &ata nodéan the Workspace Tree;

the data associated with the selected process is indexed.
In all cases, you can use tBelect Data File®utton to change thPata Files that
are indexed.
Click on a column header in the table to sort the table by that column. Click again
to reverse the order of the sort.
The following columns are shown in tiieace Index Dialog
Time: thetimestampof the event. The newest event is shown first initially.
Application: the name of the file associated with #pplication This is the
same as the Program name associated witkvtirkspacehat caused the data to

be recorded.

Process:the process idRID) of the process in which the event occurred.

8-32

RootCause GUI Reference

Trace Index Dialog

Thread: the Thread ID of the thread in which the event occurred. These thread
IDs are internal to Aprobe, and may not correspond to those shown by other
debugging tools.

Kind: the kind ofevent SNAP or EXCP, corresponding to tBeapshotand
Exceptioncheckboxes in thBelect Events DialogFor eachProcess Data Set
there is also one FILE kind event with the label Last Data Recorded, which is the
newest event from that process.

Event: the label associated with tlegent This corresponds to the Probe Param-
eter associated withlaog Snapshoprobe, or maybe be a special value used by a
predefined probe, such as (Java) EXCEPTION, C++ EXCEPTION, or Ada
EXCEPTION.

Details: the first text line of details associated with the event.

Buttons

Refresh Index: Use theRefresh Indekutton to regenerate the index using the
current selections.

Select Data FilesUse theSelect Data Files.button to choose which data files
are scanned to generate the index. This will open the Select Data Files Dialog.

Select EventsUse theSelect Events.button to choose kind of events to include
in the index. This will open the Select Events Dialog.

Find In Index: Use theFind In Index.. button to find an event or events in the
index that match(es) a string. This will open the Find Events Dialog.

OK: Once the events have been chosen, click the OK button to format and dis-
play the data in a new Trace Display. Alternatively, you can double-click an event
to display it.

Apply: Click the Applybutton to format and display the data in the original Trace
Display. This is only available when the dialog is opened from a Trace Display.

Cancel: Use theCancelbutton to dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

RootCause GUI Reference 8-33

Select Data Files Dialog

Select Data Files TheSelect Data Files Dialogermits the user to select the exact data files to be
Dialog scanned when generating the index inThace Index Dialog

Data files available for selection are displayed in a tree. Check the checkbox to
the left of a node in the tree to select that data file for indexing. Nodes in the tree
represent data files collected for processes running traced applications, the Root-
Cause log file, or a decollected log file.

Buttons

Add Process DataUse theAdd Process Dathutton to add the data files col-
lected from another process running a traced application to the data files tree.
This will open theAdd Process Data Dialotp select data files. Once added, the
data files can be selected for indexing.

Update: Once the data files have been chosen, clicklffgatebutton to gener-
ate the index and close the dialog.

Change:Click theChangebutton to accept the changes to the data files, close
the dialog, but not generate the new index.

Cancel: Use theCancelbutton to dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

Select Events Dialog TheSelect Events Dialogermits the user to select the kind of events included in
theTrace Index Dialogndex.

Check the checkbox to the left of an event kind to select those events for inclu-
sion in the index:

Snapshots:include SNAP events in the index, recorded byjaa_exceptions
UAL or by a user-inserteddog Snapshoprobe.

Exceptions:include EXCP events in the index, recorded byjthe exceptions
andexceptiondJALSs.

8-34 RootCause GUI Reference

Find Text In Events Dialog

Find Text In Events
Dialog

Trace Display

Buttons

Update: Once the event kinds have been chosen, clicklgdatebutton to gen-
erate the index and close the dialog.

Change: Click the Changebutton to accept the changes to the event kinds, close
the dialog, but don't generate the new index.

Cancel: Use theCancelbutton to dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

TheFind Text In Events Dialogermits the user to search for events in the index
which match a text string. Itis launched by thied In Indexbutton of theTrace
Index Dialog

Search For: Enter the text string to match 8earch Fortext field.

Consider Case:Check theConsider Caseheckbox to make the search case-
sensitive.

Buttons

Find: Once the search string is set, click Hied button to find the first event
that matches the string. The string starts from the event following the first
selected event, or from the first event in the index if no events are selected.

Find All: Click theFind All button to find every event in the index that matches
the string.

Cancel: Use theCancelbutton to stop the search and dismiss the dialog.

Help: Use theHelp button to figure out what is going on and how to get things
done.

TheTrace Displaywindow is used to examine detailed trace output logged for
traced programs. The Trace Display is opened froriithee Data Dialognd

from theTrace Index Dialogo show data collected for specific processes. It also
displays the start of each process inRo@tCause Log

RootCause GUI Reference 8-35

Trace Display

File Menu

The Trace Display is composed of the following parts:
» the menu bar and tt&tepping Toolbaacross the top;
» theEvent Trace Treen the left side;

» theSource Panen the upper right;

» theEvent Details PandgheCall Stack PanegheProgram Information Pane
and theData Files Panen the lower right.

These are described below.

The Trace Display initially displays the contents of a single APD or log file.

Refresh: ChooseRefreshio reformat and reload the data files or RootCause log
from which the current Trace Display was built. This is useful to add the most
recent events in the RootCause Log or from a data set that is still being written to.

Open Associated WorkspacetUseOpen Associated Workspatmeopen the
workspace associated with a program in the RootCause log file. This menu item
is only enabled if an APP_START or APP_TRACED event is selected in a Root-
Cause log file.

Add Data Files To Display:UseAdd Data Files To Displato open arace

Data Dialogfrom which a different group of data files may be selected for dis-
play. This is most useful for viewing additional events before or after those cur-
rently selected. You can determine which files are currently selected by looking
in theData Files Panat the lower right. From that dialog, you can cligkplyto
replace the current Trace Data events with the new ones, or OK to create a Trace
Display window.

Add From Index To Display: UseAdd From Index To Displatp open drace
Index Dialogfrom which different indexed events may be selected for display.
From that dialog, you can clickpplyto replace the current Trace Data events
with the new ones, or OK to create a Trace Display window.

Add Selected Process DatdJseAdd Selected Process Databuild an index

for the data file(s) associated with the selected process. This menu item is only
enabled if an APP_TRACED event is selected in a RootCause log file and data
exists for the process.

8-36

RootCause GUI Reference

Trace Display

Edit Menu

Save As XML: UseSave As XMlIto save the current event tree as an XML file.
The XML file can be processed outside of RootCause, or reloaded for later dis-

play.

Save As Text:UseSave As Texb save the current event tree as a text file. The
text file can be processed outside of RootCause.

Close:When you are finished viewing the trace displayCieseto close the
Trace Display window.

The Edit menu provides operations on nodes irEtrent Trace Treeand are
also available in &race Display Popup Mentere.

Deselect Function In Trace SetupWhile developing a trace on a local com-

puter you may want to remove unnecessary method traces from your trace. Select
a method call in the trace event tree, then us®éselect Function In Trace

Setupto remove the selected function from the trace setup.

NOTE: When used on a LINE event, this will deselect the tracing of the entire
function, not just that line.

Find Function In Trace Setup: On the other hand, you may decide that there is
additional data that must be collected with a particular event. Select an ENTER,
EXIT, LINE, or CALL_FROM method in the trace event tree, then usé&itice
Function In Trace Setumenu item to open thErace Setup Dialowith the

selected method highlighted. You can then add or remove probes of logged data
items. If the class containing the method cannot be foundNaheClass Dialog

is presented to allow the user to locate the file in which the class is defined.

Find Class In Trace Setup:To move to the node in the Trace Setup tree corre-
sponding to the Java class containing the method in a CALL node, select the
method in the trace event tree, then useRimel Class In Trace Setumenu item

to open the Trace Setup Dialog with the selected method highlighted. You can
then add or remove probes of logged data items. If the class cannot be found, the
New Class Dialogs presented to allow the user to locate the file in which the
class is defined.

Find Source: Use theFind Sourcemenu item to locate the source file corre-
sponding to an ENTER, EXIT, or LINE event.

RootCause GUI Reference 8-37

Trace Display

Find Function In Trace Events: You can use th&ind Function In Trace Events
menu item to start a search for the next or previous occurrence of the currently
selected event in the Trace Display. Select the event node in the trace event tree,
then use the menu item to open tiad Text in Trace Events Dialod he search

is started at the selected event.

Show Associated TableSome event nodes, like CALL_COUNTS, have tables
of information associated with them. Select the event node and uShahe
Associated Tablenenu item to display the data ifable Dialog

Find Text in Trace Events:You can use thEind Text in Trace Eventaenu

item to search the trace event tree for events containing a given string. The details
of the trace events are searched as well. The search is started at the selected event
or at the first event if one is not selected.

View Menu The trace events are initially grouped by threads, with each showing a well-
formed call tree. Use thdew Menuto change this.

By Threads: Use theBy Threadsnenu item to separate the displayed events by
individual threads. This will permit you to examine the flow within each thread in
isolation from the others.

By Time: Use theBy Timemenu item to display the trace events in time order.
Events from different threads and processes will be interleaved to indicate the
order in which they occurred. This can help you understand the interactions
between the different threads.

Step Menu Use theStep Menuo step through the individual events in the event trace. Step-
ping allows you to review program execution forwards and backwards.

Step Next Forward: Use theStep Next Forwardhenu item to step to the next
event in the forward direction.

Step Next Backward:Use theStep Next Backwanmhenu item to step to the pre-
vious event.

Step Into Forward: Use theStep Into Forwardnenu item to step into the next
method call in a forward (increasing time) direction. Using this menu item from
the beginning of a trace will visit every trace event in the order it occurred.

8-38 RootCause GUI Reference

Trace Display

Help Menu

Stepping Toolbar

Step Over Forward: Use theStep Over Forwaranenu item to step over the cur-
rent method call in a forward direction. This can be used to skip from an ENTER
node to the corresponding EXIT node, if it exists in the current trace.

Step Out Forward: Use theStep Out Forwardnenu item to step out of the cur-
rent call to the next event in a forward direction. This can be used to get out of
calls that are no longer of interest.

Step Into Backwards: Use theStep Into Backwardsienu item to step into the
most deeply nested previous call. This is effectively the most immediately previ-
ous event.

Step Over Backwards:Use theStep Over Backwardsenu item to move back-
wards over a call that is not of interest. This is useful to go from an EXIT node to
the corresponding ENTRY node, if it exists in the current trace.

Step Out Backwards:Use theStep Out Backwardsienu item to move back-
wards out of the current call to the previously traced caller.

Use theHelp menu to figure out what is going on and how to get things done.

The Stepping Toolbacontains a number of buttons that help you step through the
trace events in sequential forward and reverse orders. These correspond to the
items in theStep Menu

The two large up and down arrows correspond to:
Step Next Forward
e Step Next Backward

The next bank of six buttons are:
e Step Into Forward

e Step Over Forward

e Step Out Forward

» Step Into Backwards

» Step Over Backwards

e Step Out Backwards

RootCause GUI Reference 8-39

Trace Display

Find

Event Trace Tree

TheFind button provides quick access to tiad Text in Trace Eventgpera-
tion, also available from thedit Menuand theTrace Display Popup Menu

TheEvent Trace Tredisplays the trace events logged by the traced program. The
tree can be displayed in two different waBg, ThreadsaandBy Time The initial
view presented iBy Threads

In the by-thread display, the tree will display one branch for each thread that was
traced. Entry and exit to called methods and other events can be viewed by
expanding the branches of the tree. You can use the stepping buttons to navigate
through the trace events, or you can directly manipulate the trace event tree with
the mouse.

In a by-time display, the tree will display slices of execution from the traced
threads. Each thread slice can be expanded to display the events that occurred
with that slice.

Most nodes in the tree consist of an icon, usually just a letter; followed by a label;
followed by a description. Selecting most nodes also updates the contents of the
Source Panand theEvent Details Panwith additional information.

The following kinds of events are displayed:
APP_START a program was started but not traced.
APP_TRACED a program was started and traced.

START_DISPLAYED_DATA
The start of the displayed data.

END_DISPLAYED_DATA
The end of the displayed data.

THREAD_START the start of thread in a program.
THREAD_END the end of a thread in a program.
PROCESS/THREAD a thread slice.

ENTER entry into a function or method.

EXIT exit from a function or method.

ENTER (cont.) the continuation of a method call trace.
CALL_FROM the caller of the function in the immediately

following ENTER node.

8-40

RootCause GUI Reference

Trace Display

Trace Display Popup
Menu

LINE a source line trace.

LINE (Call) a source line marking the caller of a method.
COMMENT a probe logged a comment.
PROGRAM_COMMENT a comment logged at program start.
TRACEBACK a probe logged a traceback.

TEXT unformatted program or probe output.
EXCEPTION An exception-triggered snapshot

SYN_CALL_COUNTS synthesized (event-based) call count table.

JAVA_LOAD_SHED information about methods disabledibgd shed-
ding.

SYN_JAVA_CALL_COUNTS
synthesized (event-based) call count table

JAVA_CLASS_LOAD dynamic load of a Java class

JAVA_CLASS_LOADS atable of all dynamically-loaded classes

In addition, there are “user event” nodes, marked withcan, which may have
various labels. Examples of user events are program statistics inserted from the
Probes Pangexception events added by #eceptionorjava_exceptionpre-

defined UALs; and “Data File Change” events indicating the point in time where
a new data file was started.

Also, there are snapshot events, indicated by a I8a€kis will be followed by
the event name, such as EXCEPTION or ROOTCAUSE_SNAPSHOT.

Select a node in the tree and use the right mouse button (MB3) to display a popup
menu. This displays the operations available irEtié Menu

» Deselect Function In Trace Setup
* Find Function In Trace Setup

* Find Class In Trace Setup

» Find Function In Trace Events

* Find Source

* Show Associated Table

* Find Text in Trace Events

RootCause GUI Reference 8-41

Trace Display

Source Pane

Event Details Pane

Call Stack Pane

Program Information
Pane

Data Files Pane

In addition, the following operations from théde Menuare provided to operate
upon APP_TRACED nodes and APP_START nodes:

* Add Selected Process Data

* Open Associated Workspace

The Source Panelisplays the source file associated with the currently selected
trace event in thEvent Trace Tredf the event doesn’t have source associated
with it, some other explanatory text may be shown.

The Event Details Pandisplays additional data associated with the currently
selected event in tHevent Trace TreeThis includes data items logged on entry

to or exit from methods and when a line is reached, and the time associated with
each event. Complex details are organized as a tree; expand the branches of the
details tree to view the data.

TheCall Stack Pandlisplays the simulated call stack for the currently selected
event in theevent Trace Tree€This includes only methods that have been traced
(and appear in the Event Trace Tree). The user should log tracebackisagsing
Tracebackin theProbes Panef theTrace Setup Dialotp get the actual call
stack.

TheProgram Information Pandabeled “Program Info”, displays information
about the program(s) that were traced and the threads within the program(s).
Each displayed APD file will be represented by a node describing the APD file,
the program, the process, and the computer “HostID”. Beneath each APD file
will be nodes for the program start and end, and nodes for each of the threads
started by the program.

If the log_env predefined UAL was selected in\thierkspace Trgehe informa-
tion recorded by that probe will appear in the program information pane as well.

TheData Files Pandalisplays the data files from which the trace was built.

8-42

RootCause GUI Reference

Find Text in Trace Events Dialog

Find Text in Trace
Events Dialog

Table Dialog

CALL_COUNTS Table

TheFind Text in Trace Events Dialdg opened by clicking thEind button along

the top of the window, or choosirfgind Text in Trace Evenfsom theEdit Menu

or theTrace Display Popup Menuit is used to search for trace events that con-
tain a given pattern. You can select a trace event in the tree to be the starting point
of the search (otherwise it starts at the first event). You specify the string to
search for, and can choose to consider case when matching. The next or previous
event that contains the given search string will be selected, or a dialog will indi-
cate that no matches were found. Note that you can select alternate starting nodes
while the search dialog is visible to direct the search.

Buttons

Use theNextbutton to find the next occurrence of the string in an event. Use the
Previousbutton to find the previous occurrence of the string in an event. Use the
Cancelbutton to dismiss the search dialog. UseHbép button to figure out

what is going on and how to get things done.

The Table Dialogis used to display table data associated with trace events, spe-
cifically the CALL_COUNTS, LOAD_SHED, and JAVA_CLASS LOADS

events. The Table Dialog displays a description of the data at the top, the table of
data in the center, and a legend at the bottom.

You can sort on a column of the table by clicking the label of that column. Click
again to reverse the sort.

The Call Counts Table Dialog associated with the SYN_JAVA_CALL_COUNTS
nodes is the

Call Counts Table Popup Menu

The table data contains method names and the call count for each one. Select a
row in the table and use the right mouse button (MB3) to display a popup menu.
This provides the same operations as are available on ENTRY and EXIT nodes in
theEvent Trace Tree

» Deselect Function In Trace Setup
e Find Function In Trace Setup

e Find Class In Trace Setup

* Find Function In Trace Events

RootCause GUI Reference 8-43

Table Dialog

JAVA_CLASS_LOADS
Table

LOAD_SHED Table

In addition, the operation
* Find Class in Trace Events

is provided to search from the start of the event tree for the class name using the
Find Text in Trace Events Dialog

Buttons

Use theDismissbutton to dismiss the dialog. Use tHelp button to figure out
what is going on and how to get things done.

The Java Class Loads Table Dialog is associated with the
JAVA CLASS LOADS node near the end of the event tree.

Java Class Loads Popup Menu

The table data contains class names. Select a row in the table and use the right
mouse button (MB3) to display a popup menu. This provides the following
operations:

» Find Class In Trace Setup
* Find Class in Trace Events

is provided to search from the start of the event tree for the class name using the
Find Text in Trace Events Dialog

Buttons

Use theDismissbutton to dismiss the dialog. Use tHelp button to figure out
what is going on and how to get things done.

TheLOAD_SHED Tablés associated with the LOAD_SHED ‘S’ node at the end
of the trace events tree. This table displays information about methods for which
tracing was disabled Hgad sheddingluring the previous run due to excessive
overhead. Each entry shows the method that was disabled, the time at which it
was disabled (to compare to other elements in the tree), arftétss what will
happen to the method the next time it is traced from this workspace. The status
may be:

8-44

RootCause GUI Reference

Table Dialog

Don’t Trace: don't try to trace it next time (default);
Load Shed:disable if it takes too much time, (as for the previous run)
Don’t Shed: trace it, and don’t disable it even if overhead is high.

Only methods for which the actionlizad Shedvill appear in the table will

appear in this table after the next trace. Those maddkedt Tracewill not be

traced at all and so will not appear in the trace event tree at all. And those marked
Don’t Shedwill always be traced, regardless of overhead.

The status for all selected rows may be changed using operations in the table
popup menu, described below.

The action for an individual row may be changed by clicking on the entry in the
Statuscolumn. This displays an option menu from which you may select the
desired status.

As with other tables, you can sort on a column of the table by clicking the label
of that column. Click again to reverse the sort.

LOAD_SHED Table Popup Menu

The right mouse button (MB3) displays a popup menu to operate on selected
rows in the table. You can use ‘Ctrl-A’ to select all items, or hold down the Cirl
or Shift keys while clicking to select multiple items in the usual way.

The popup menu provides operations unique to the LOAD_SHED table:

Don't Trace Selected FunctionsUse theDon't Trace Selected Functiomsenu

item to change the Status of the selected functioBeidt Trace All methods
marked afon’t Traceare updated in the Trace Setup Dialog when the table dia-
log’s Updatebutton is clicked.

Don't Load Shed Selected Functionsse theDon't Load Shed Selected Func-
tionsmenu item to change the Status of the selected functi@mto Shed

Load Shed Selected FunctiondJse theLoad Shed Selected Functiangnu

item to change the Status of the selected functions balc&ad Shedthe default
behavior. The specific point at which a method may be load shed is set in the
Enable Load Sheddingption of theGlobal Trace Options Dialag

RootCause GUI Reference 8-45

Table Dialog

The popup menu also provides these standard operations fréditthdenu
e Find Function In Trace Setup

¢ Find Function In Trace Events
Buttons

Use theUpdatebutton to apply any changes made to the Status fields in the table
to the corresponding functions. Use tBancelbutton to dismiss the dialog with-
out making any changes. Use thelp button to figure out what is going on and
how to get things done.

8-46 RootCause GUI Reference

Platform-Specific GUI Issues

Platform-Specific GUI
Issues

The RootCause GUl and
Different JREs

X-emulators: (Exceed,
Reflection)

The RootCause GUI is implemented in Java. Java is supported differently on dif-
ferent operating systems. The RootCause installation includeEdJava

Runtime Environment), which is used by default whernrdlsécause opecom-

mand is run. If you would prefer to use a Java installation other than the one
shipped with RootCause you may define the environment variable
APROBE_JRE to point to the java program, for example:

export APROBE_JRE=$(whence java)

or

setenv APROBE_JRE /opt/j2rel_3_101/bin/java

Note that this must be Java version 1.2.2 or newer.

Solaris RootCause is shipped with tdRES to ensure that the GUI will run on
all versions. You will find that Java runs best on Solaris 8 or newer, where it can
use the newest JRE.

AIX version 5.1 or newer is required to run the Java 2 runtime required by the
RootCause GUI and other workspace-related commands that use Java.

We have written the RootCause GUI in Java using the Swing components. These
Swing components do not work well with X windows emulators such as Hum-
mingbird Exceed and Reflection. We are investigating this, but the GUI is best
viewed from a native Unix X display.

We have seen that if you set eXceed to use an X window manager, and start the
Motif window manager (mwm) or a similar window manager on the Solaris host,
this works around the common problems seen with Exceed.

To do this, go to the Exceed configuration (you can get to this by right-clicking
on the Exceed button in the toolbar if it's running and selecting Tools/Configura-
tion). Next, select Screen Definition, and in the 'Screen 0' tab, set Window Man-
ger to be “X". Click “OK” when prompted to perform a server reset which will
then close all of your X windows. Open a new Exceed X window and start the
Motif windows manager by executimgsr/dt/bin/dtwm . Then launch the

RootCause GUI Reference 8-47

Platform-Specific GUI Issues

RootCause GUI from this window. GUI presentation should be improved, how-
ever there may be no window borders.

If the RootCause windows do not appear as described in the documentation when
running with a Reflection X server, open the X Client Manager, and select Win-
dow Manager from the Tools menu. Select Microsoft Windows as the Default
Local Window manager. Select Microsoft Windows desktop as the Window
mode. Note that you must reset the Reflection X server for a change in the Win-
dow Mode to take effect, which will close all of your X applications.®Htor
Applyto commit any changes you have made.

RootCause has been exercised under Reflection X Version 8, the version being
shipped by WRQ as of 2001-06. These directions may or may not apply to other
versions. Contact support@ocsystems.com for further details.

APROBE_WM_WORKAROUND Environment Variable

The APROBE_WM_WORKAROUND environment variable, when set to true,

will stop the RootCause GUI from trying to set the location or size of shell win-
dows. We have found that this eliminates a lot of problems when using an X-
server such as Exceed to display the RootCause GUI. The default value is set to
false.

Some GUI windows are not displayed correctly on a PC when using the Exceed
X-server with a "native" window manager while logged onto a Solaris or Unix
platform.

The problem is that, even though the GUI requests a window position or size,
these "hints" are not always honored by the native window manager running on
the PC. The result is often incorrect window size or placement.

If you are using a native window manager that does not honor these hints, you
can set APROBE_WM_WORKAROUND to prohibit the RootCause GUI from
requesting them.

APROBE_MONOSPACED_FONT Environment Variable

The APROBE_MONOSPACED_FONT environment variable allows the default
monospaced font to be changed. We have found that using a different mono-
spaced font eliminates some font problems when using an X-server such as
Exceed to display the RootCause GUI.

8-48

RootCause GUI Reference

Platform-Specific GUI Issues

Setting Background
Colors

Copy/Paste to/from
Clipboard

The font assigned to this environment variable is passed through as a Java prop-
erty that is used in UserPreferences. Unfortunately, it is difficult to determine the
correct font to specify. We have had good results with the following alternate
monospaced fonts:

APROBE_MONOSPACED_FONT=LucidaSansTypewriter-PLAIN-12

APROBE_MONOSPACED_FONT=monospaced-PLAIN12

The properties in thebotcause.propertidge, described itChapter 7, "Root-

Cause Files and Environment Variablegiecify the background color for Root-
Cause windows. The default is white, but you can change this to any of the Java-
defined color names, or using a 6-character hexadecimal RGB value such as
#FAEBDT.

The RootCause GUI is implemented in Java. Prior to JRE 1.4 the mouse-based
copy and paste operations didn't work for JTextField and JTextPane classes used
in RootCause. RootCause includes a version 1.4 JRE which it uses if possible,
which is generally only on Solaris 8 and newer.

On earlier versions of the JRE, including the “fallback” version 1.2.2 that is also
included with RootCause, there were two problems. The biggest problem was
that these classes didn't have built-in support for cut/copy/paste but it could be
explicitly added. We have added this explicit support for the RootCause main
window's Message pane, but not for text areas like the Source pane or text fields
in dialogs.

The other problem was that, even for explicitly implemented clipboard opera-
tions, Othe “clipboard” buffer that Java read from for Paste and wrote to for Copy
was not the same as the “primary selection” buffer read/written by the default
mouse-based operations.

There's nothing to be done about the first problem; unless you're using Solaris 8
you won't be able to copy or paste from text fields in RootCause. However, there
is a workaround for the second problem:

There is an application called “xclipboard” that's standard on Solaris (in /usr/
openwin/bin) that provides an interface between these two X Windows clip-
boards. So to copy something from the RootCause message window, one would:

RootCause GUI Reference 8-49

Platform-Specific GUI Issues

1. Start the xclipboard application
2. Select the desired text from the RootCause message window

3. UsethéCopy" operation in the workspadedit Menuor Messages Pane pop-
up menu.

The copied text will appear in the xclipboard window.

4. Use your mouse in the normal way to copy the text from the xclipboard win-
dow.

5. Use your mouse in the normal way to paste to some other (e.g., mailer) win-
dow.

A more drastic alternative is to change your X resources to always use the same
clipboard as Java does. This requires that you restart all xterms and other applica-
tions from which you might want to copy/paste, and can be cumbersome with
other applications that use both kinds of clipboards such as xemacs. However, if
you insist, you add the following to your X resources:

*VT100.Translations:#override \

\~Shift \~Ctrl \~Meta <Btn1Up>:select-end(CLIPBOARD)\n\
\~Shift \~Ctrl \~Meta <Btn2Up>:insert-selection(CLIPBOARD)
\n

8-50

RootCause GUI Reference

CHAPTER S RootCause Command
Reference

The following commands are available from the command line after RootCause
has been installed and the setup script in the RootCause installation directory has
been executed (s&hapter 4, "Getting Started"

9-1

RootCause and Different Shells

RootCause and
Different Shells

Different shells on Solaris have different capabilities. The following differences
apply to the different shells:

sh (Bourne shell):

Therootcause_on androotcause_off commands are not available. Instead,
you must use the dot commands:

. rootcause_enable
. rootcause_disable

ksh (Korn shell)

You may useootcause on androotcause off instead ofootcause_on
androotcause_off , because rootcause is defined as a shell function. Note that
RootCause requires thath be installed, though you need not use it as your
shell. On Linux you may have to instptlksh .

csh (C shell)
rootcause_on and rootcause_off are aliases defined in your shell when you

“source” setup.csh. C shell does not support shell functions, so “rootcause on”
and “rootcause off” won't work.

bash

The setup script and shell functions feh work for bash as well. However, ksh
is still needed for install_rootcause, rootcause_status, and other scripts.

9-2

RootCause Command Reference

rootcause

rootcause

Therootcause command is designed to run in a simple, intuitive manner when
default file names are used. When run with no arguments, it gives version and
license information. When run with rootcause -h, it shows the following com-
mands, which are described in detail in this chapter.

rootcause build
rootcause collect
rootcause config
rootcause decollect
rootcause deploy
rootcause format
rootcause log
rootcause merge
rootcause new
rootcause_off
rootcause_on
rootcause open
rootcause register
rootcause run
rootcause status

rootcause xrun

build traces/probes in workspace.

collect agent workspace data for analysis.
show current configuration information.
unpack collected workspace data for analysis.
package a workspace for remote deployment.
format data in workspace.

perform operations on rootcause log file.
merge two workspaces to create a third.
create a new workspace.

disable rootcause intercept of applications.
enable rootcause intercept of applications.
start the RootCause GUI.

register an application with a workspace.

run any command under rootcause.

show if rootcause is enabled.

run a command under rootcause in a separate window.

RootCause Command Reference 9-3

rootcause build

rootcause build

Therootcause build command updates a RootCause workspace without
opening the GUI. This is useful for maintaining workspaces as part of a script-
driven product development process. The location of a workspace is provided,
along with paths to all relevant programs and modules whose locations or con-
tents may have changed. Note that a side-effect of this process may be to lose
traces that no longer apply to a changed module.

Syntax:

rootcause build
[-Fh][-x program_file | file .class| file .jar]
[-m module T*
[-w] workspace .aws

Options:
-F force the build even if the workspace is locked.
-h give this command’s usage

-x program_file
the executable program, ortheass or .jar file containing
your Java application’s main entry. This is the same as the ar-
gument toReset Prograrim the GUI.

-m module the path of alynamic moduléhat the program applies to. This
is the same as the argumenRieset Dynamic Modula the
GUL.

-w workspaceaws
an existing RootCause workspace.

Examples:

1. Rebuild workspace Pi.aws against current modules in case they’'ve changed:
rootcause build Pi.aws

2. Update the RootCause self-analysis workspace for the current installation lo-
cation:

rootcause build -x $APROBE!/lib/probeit.jar
-m $APROBE/lib/libdebuginfo.so
-w $APROBE/arca.aws

9-4

RootCause Command Reference

rootcause collect

rootcause collect

Therootcause collect command is executed on a remote computer where

the RootCause Agent component has been installed to gather the RootCause data
together into a singlelct file to be transmitted to a computer where the Root-
Cause GUI component has been installed for subsequent decollection and analy-
sis. It examines the rootcause registry to determine the workspace for the classes,
if no workspace is specified. Multiple classes and workspaces may be specified
for collection. If no arguments are supplied, the RootCause log and registry are
collected.

Syntax:
rootcause collect

[- AFh][-0 clct_file 10 -f other_file]

[[x] program_file | -c class | [-w] workspace .aws]...
Options:

-A suppress generation and collection of for native modules. This
might be done to reduce the download size if you are sure the
local and remote modules are identical.

-F force overwriting ofcict_file, if present.
-h give this command’s usage
-oclct_file the collect file to create (defaufirst_argumentlct)

-f other_file any other file (not directory) to be added to ¢het_file. You
can also simply copy files or directories into the workspace.

-X program_file
the registered program to which deployed workspace applies

-cclass the registered Java class to which deployed workspace applies

-w workspace
the workspace contents to be collected if program or class is not
known

Examples:

1. The following command collects the data for the Java class Pi and the work-
space fred.aws and places those two RootCause traces into the single file my-
server.clct.

rootcause collect -c Pi -w fred.aws -0 myserver.clct

RootCause Command Reference 9-5

rootcause config

rootcause config The rootcause config command reports current configuration information. With
no arguments it shows the installation directory and license information.

Syntax:

rootcause config [-dhiLnRuvwV]

Options:

-d give installation directory (that is, the value #FROBE

-h give this command’s usage

-l give license information

-L give application log path (SAPROBE_LOG or default loca-
tion).

-n give product name (Console or Agent).

-R give application log path (FAPROBE_REGISTRY or default
location).

-u give user directory $PROBE_HOMEor default).

-V give product version number.

-V give product version description (default).

Examples:

1. Show the current installation information:

$ rootcause config

RootCause Console 2.0.5 (030405)

Installed in /app1/product/aprobe

This product is licensed to 1111 OC Systems, Inc.
This license will expire on 31-dec-2003.

9-6 RootCause Command Reference

rootcause decollect

rootcause decollect

The rootcause decollect command unpackakta file built by therootcause
collectcommand. This function is also performed by Eeeollectoperation in
the RootCause GUI (séPecollect Data Dialog" on page 81

The result of this operation is a directory tree whose root directory has suffix
.dclct

Syntax:

rootcause decollect [-F]1[-o directory] clct file
Options:

-F force delete oflirectory, if present

-o directory extract intodirectory (default:clct_file_namedclct)

clet_file collect file that was built byootcause collect
Examples:

1. Decollect the data imyserver.clct into myserver.dclct
rootcause decollect myserver.clct

RootCause Command Reference 9-7

rootcause deploy

rootcause deploy

The rootcause deploy command packagesrkspacefor use in aemote

(agen} environment. This function is also performed by Eeploy operation in
the RootCause GUI (séPeploy Dialog" on page 8-)9The result of this oper-
ation is a zip file with suffixdply . Note that this command does not verify the
workspace is already built. If you're not sure,rdotcause buildirst.

Syntax:

rootcause deploy
[-Fh][[-x] program_file | [-c class] [-w] workspace .aws]
[-1 license_file 1[-m module][-0 dply file]

Options:

-cclass the Java class registered with the workspace you wish to deploy.

-F force overwriting ofdply_file, if present.

-h give this command’s usage

-l license_file

the agent license file to include in the deployed workspace (de-
fault SAPROBE/licenses/agent_license.dat

-m module is amodule(shared libraryfor which anADI file should be
generated.

-odply_file the deploy file to create (defawtorkspacecict)

-X program_file
the program registered with the workspace you wish to deploy.

-w workspaceaws
an existingpuilt RootCause workspace.

Examples:

1. Deploy workspace Pi.aws.
rootcause deploy Pi.aws

2. Deploy workspace forclass Factor and module libFactor.so into Factor.dply.

rootcause deploy -c Factor -m /app/lib/libFactor.so -o
Factor.dply

9-8

RootCause Command Reference

rootcause format

rootcause format

The rootcause format command rapgormaton the data collected in the speci-
fied workspace. This produces output similar to that produceskye As Texin

the RootCause GUI. By defaultotcause format operates on the most cur-

rent process. Because it formats all the data it can take a while for large amounts
of data. You can use the -O option in conjunction with the apformat “-n” option
to limit it to specific APD files, as shown in Example 3 below.

Syntax:

rootcause format
[-hlir][-p PID][-O " options "|[-t tmpdir]
[-w] workspace .aws

Options:

-h give this command’s usage

-l list the APD rings (Process Data S®tin the workspace, but
don't format anything. The newest data set is listed first.

-r raw: just run apformat directly on the APD file (with options
specified usingO) rather than using the workspace’s format-
ting script.

-p PID format data for the process givenB\D

-O "options

passoptionsto the apformat command. The options must be in
guotes, and quotes in the options themselves must be preceded
by a backslash.

-t tmpdir specifies the directory where intermediate files are to be pro-
duced. These can get very large--up to 10 times the size of the
APD files depending on the formatting--and this can be used to
avoid disk-space restrictions where the workspace resides.

-w workspaceaws
the RootCause workspace containing the data to be formatted.

Examples:

1. Format the newest data set in Pi.aws into theefibet
rootcause format Pi.aws > Pi.txt

RootCause Command Reference 9-9

rootcause format

2. List theProcess Data Sat workspace Pi.aws.

$ rootcause format -I Pi.aws
/work/Pi.aws/Pi.class.apd.11991/Pi.class.apd
/work/Pi.aws/Pi.class.apd.11785/Pi.class.apd

3. Runapformatdirectly on the newest data file for process 11785 in Pi.aws.
rootcause format -r -O "-n 0" -p 11785 Pi.aws

9-10 RootCause Command Reference

rootcause log

rootcause log Therootcause log command provides information about the RootCause Log,
and allows its maximum size to be changed.

Syntax:

rootcause log [-hinsFz | -s size]

Options:

-F force -s size or -Z operation without confirmation
-h give command-line help

-l list log file contents to standard output

-n list the log file name to standard output

-S list the log file size to standard output

-ssize set the maximum size of the logdizebytes (size > 1000)
-Z clear the contents of the log file

Examples:

1. Write the contents of the log to standard output:
rootcause log

2. Set the size of the log to 20000 bytes:
rootcause log -s 20000

RootCause Command Reference 9-11

rootcause merge

rootcause merge

Therootcause merge command merges tweorkspacs to create a new, third
workspace. It works by copying the fimimary workspace to the thingsult
workspace, then adding compatible traces and UALs from the seeoaddary
workspace. Anodulemust exist in both thprimary andsecondaryworkspaces
in order that traces for that module appear indiseltworkspace.

There is no GUI operation equivalent to rootcause merge. You can use it in con-
junction with the GUI by:

e UsingWorkspace->Closéo close your current workspace

* Applying rootcause merge from the command line

» UsingWorkspace->Opewon the result workspace.

Note: Therootcause builédndrootcause registaperations must be applied to

theresultworkspace before the result workspace can be used to trace an applica-
tion.

Syntax:

rootcause merge [-Fh] primary .aws secondary .aws result .aws

Options:

-F forceresultaws to be overwritten if it exists

-h give command-line help

primary.aws
The primary workspace, on which the result workspace is
based.

secondanaws

The secondary workspace, from which additional traces and
UALS are added to the result workspace.

resultaws The new workspace that is created.
Examples:

1. Merge traces in PiDetails.aws into Pi.aws to produce PiPlus.aws and make Pi-
Plus.aws the new workspace for tracing Pi.

rootcause merge PiDetails.aws Pi.aws PiPlus.aws
rootcause build -w PiPlus.aws
rootcause register -c¢ Pi -w PiPlus.aws

9-12

RootCause Command Reference

rootcause new

rootcause new

The rootcause new command creates awerkspaceGenerally this is done
through the RootCause GUI using tiew menu item oOpen Associated
Workspace(se€'New Workspace Dialog" on page 8-The result of this oper-
ation is the named workspace, initialized to do default tracing. H tbption is

used, the workspace is also registered with the specified program or Java class.

Syntax:

rootcause new
[-Fhr][-c class] -x program_file [-w] workspace .aws]

Options:

-cclass the Java class registered with the workspace you wish to deploy.

-F force overwriting ofworkspace.aw# it exists.

-h give this command’s usage

-r rtlagister the new workspace with the specified program or Java
class

-x program_file
the executable program or Javdass or.jar file the work-
space will be used to trace (as on thetcause opecommand).

-w workspaceaws
the new workspace to be created.

Examples:

1. Create and register a new workspace for Pi.class.
rootcause new -r -x Pi.class -c Pi -w Pi.aws.

RootCause Command Reference 9-13

rootcause_off

rootcause_off Use theootcause_off ~ command to disable rootcause interception of pro-
cesses on your machine.

Syntax:
rootcause_off

rootcause_on Use therootcause_on command to start the inspection and interception of pro-
cesses on your machine to determine if they should be traced with rootcause.

Syntax:
rootcause_on

9-14 RootCause Command Reference

rootcause open

rootcause open

Therootcause open command starts the RootCause GUI. If the application
class specified on the command line is registered, the GUI will automatically set
the workspace from the registry entry for the application. If the application is not
registered, the GUI will prompt for a new workspace name and register the appli-
cation. If no arguments are specified, the current RootCause Log file is opened.

Syntax:

rootcause open
[[-x] program_file]
[-c classname |[[-w] workspace .aws]
[[d] dir .dclet|[-z] file .clct]

Options:

program_file
the executable program file, or the tielass or.jar file con-
taining your Java application’s main entry

classname the main class name. This is requiredi@@ssnames not the
same asile

workspaceaws
a new or existing RootCause workspace

dir.dclct a directory created by the RootCabDseollectoperation
file.clct a file created by th@otcause collect command

Examples:

1. Startthe RootCause GUI and examine the RootCause Log file in a Trace Dis-
play window.

rootcause open

2. Start the RootCause GUI to open new or existing workspace converter.aws.
rootcause open converter.aws

3. Start the RootCause GUI to open a new or existing workspace for main class
Pi compiled into file Pi.class.

rootcause open Pi.class

4. Start the RootCause GUI to open a new or existing workspace for main class
com.ocsystems.probeit.Main compiled into file probeit.jar.

rootcause open probeit.jar -c com.ocsystems.probeit.Main

RootCause Command Reference 9-15

rootcause open

5. Startthe RootCause GUI to unpack (decollect) the collected rootcause data in
pi_demo.clct.

rootcause open pi_demo.clct

9-16 RootCause Command Reference

rootcause register

rootcause register

Therootcause register command provides the interface to the RootCause
registry. The GUI will allow you to add or delete the current workspace from the
registry, but you must use the register command to otherwise manipulate the reg-
istry. It is likely that, over time, more GUI support will be added to manipulate

the registry, but on computers where only the RootCause Agent is installed, there
is no GUI and theegister command must be used.

Syntax:
rootcause register [subcommand] options [deploy file]

Description:

subcommandThe subcommanflag designates the operation to be performed:

-a add a new entry in the registry (default)

-d delete an entry from the registry

-h give command help

-k return O iff specified args are already registered & enabled

-l lists all registry contents

-Ir list registry name only
-lw list workspace name only
-Ix list only registered JVM or class only

-sdebug enable/disable debug mode withon/off (off by default)

-sverbose enable/disable verbose mode wittordoff (on by default)
With verbose mode on, all processes are recorded in the log;
with verbose off, only traced applications are recorded.

-Z clear entire registry contents, includirgsettings, returning
them to their default values.

options. Options further qualifying the above are:

-c classnam@robe Java commands naming main ctdassname

-eon |off off specifies 'disabled' (default: on)

-F force without confirmation
-j dir dir is root of JRE containing java exe to probe
-m file file is a module required fateploy_fileconsistency checking

RootCause Command Reference 9-17

rootcause register

-r file file is registry file to use

-w dir.aws file is workspace to use

-x file file is executable to probe

deploy file is a.dply file to unpack into a registered workspace

Examples:

1. List the registry name and contents:
rootcause register -I

2. Delete the registry entry folass Pi
rootcause register -d -c Pi

3. Turn off recording of all processes in the RootCause log:
rootcause register -s verbose -e off

4. The following command will do the following all in one step:
» register the program
» create the workspace (if it does not exist)
» deploy the trace into the workspace

This would be the typical command used on a remote computer where
only the RootCause Agent component was installed in order to imple-
ment a .dply file generated by the RootCause GUI component. After this
command is issued, you would merely execute rootcause_on in the con-
text of the shell and run the application.

rootcause register jfrob.dply

9-18 RootCause Command Reference

rootcause run

rootcause run

rootcause xrun

rootcause status

Userootcause run before your command to cause it torbe with rootcause
on, independent of the currerdotcause statusThe command specified will be
run in the current window exactly as if it were not preceded by rootcause run.
This is equivalent to

rootcause_on
command
rootcause_off

Syntax:
rootcause run command

Options:

command any shell command
Example:

1. Run the Pi application with rootcause on:
rootcause run java -cp $SAPROBE/demo/RootCause/Java Pi

Identical torootcause runbut thecommands run in a separate window. This is
used by th&kunbutton in the RootCause GUI.

Syntax:
rootcause xrun command
Use theootcause status command to show whether rootcause tracing is

currently enabled or disabled.

Syntax:
rootcause status

RootCause Command Reference 9-19

rootcause status

9-20 RootCause Command Reference

CHAPTER 10

Selected Topics

RootCause and
Efficiency Concerns

This chapter contains discussions of various RootCause topics that may be of
interest to you, the RootCause user.

RootCause should preferably be installed on a local file system. It will work if it
is mounted on a remote file system, but this may also impact performance.

The RootCause workspace should be created on a file system that is local to the
machine on which the traced process will be run. The data logged by RootCause
is written to the workspace. If the workspace is remote, then the logged data will
have to be transmitted across the network, increasing the overhead of logging as
much as tenfold. See als®ootCause Data Management" on page 3-4

RootCause adds probes to the application in memory. These probes are optimized
machine code, so while they are fast, they must of course add overhead to the
execution of the application. RootCause only “patches” the traced functions and
methods. For Java, RootCause inserts byte code to only trace the methods of
interest, not all methods.

Furthermore, RootCause tracing applies autométad‘sheddingto automati-

cally turn off tracing of functions that are introducing high trace overhead. Such
functions can then be removed from the trace specification by the user in the next
run. Using this mechanism and by adjusting the load shedding level, one can

10-1

RootCause and Efficiency Concerns

quickly get to an acceptable level of overhead. "BeetCause Overhead Man-
agement" on page 3-7

Typically, we have seen that one can add a 5% load and still get a useful trace. In
general, you will have to iterate to define a good trace that adds a reasonable load
so the application can still run in the operational environment. Note that Root-
Cause supports this workflow, by allowing one to choose (and remove) trace
items from the viewer to speed the removal of “noise” routines (noise routines
are those that add little value to the trace).

Note that a program being probed by RootCause, will take somewhat longer to
start. Typically, a few extra seconds are required for a RootCause session on an
application. This minimal overhead is incurred because RootCause does as much
as possible up-front, to reduce the runtime penalty later.

10-2

Selected Topics

Solaris SETUID, and Security Concerns

Solaris SETUID, and
Security Concerns

This section briefly describes how RootCause / Aprobe can be used with certain
“secure” applications on Solaris. These mechanisms are not yet provided for
other platforms; contact OC Systems for more information.

The Solaris operating system provides a secure environment for debugging and
running your applications. RootCause and Aprobe do not interfere with this
mechanism but extend it to work safely in a number of environments that require
it.

For the purposes of this document, a secure application is one that has the setuid
bit set. We discuss how the Solaris security mechanism works with these applica-
tions and how Aprobe and RootCause provide their own extensions to the Solaris
security protections to allow you to safely run probes on these applications with-
out compromising system security.

Note that this document does not discuss applications with the setgid (group) bit
set. At the time of writing, Aprobe and RootCause do not support running such
applications.

Avoiding Solaris Warnings

Even if you do not wish to probe secure applications, you may want to place
libapaudit.so in the secure location anyway to eliminate error messages. If
you do not do this and try to run RootCause on an application that has the SET-
UID bit set, you will get an error message something like:

Id.s0.1: mail: warning: /opt/RootCause/lib/libapaudit.so:
open failed: illegal insecure pathname

Id.s0.1: mail: fatal: /opt/RootCause/lib/libapaudit.so: audit
initialization failure: disabled.

Although these look like fatal errors, the application ran without error, and it was
only the loading ofibapaudit.so that failed.

Placinglibapaudit.so in the secure location as described below will allow
libapaudit.so to load for SETUID applications likesr/bin/mail so it can
determine whether to probe the new process or not.

Note that just placingjbapaudit.so in the secure location doestallow one
to actually probe the SETUID application unless one is running as the effective
user.

Selected Topics 10-3

Solaris SETUID, and Security Concerns

The secure path for dynamically-loaded libraries is different on each version of
Solaris. This logic is encapsulated in a scrigifcause_libpath.

The simplest usage is:
1. Log on as root so you have write access to /ust/lib and its subdirectories.

2. Set up for using RootCause, e.g.,
. lopt/RootCause/setup

(see"The Setup Script" on page 4-1

3. Run the command:
rootcause_libpath -c

This will copy the appropriate library to the secure locations. These lo-
cations are under /usr/lib, so you must be super-user. The script assumes
that you are set up for RootCause, so you must run the RootCause setup
script first. ' You should see output like:

lusr/lib/libapaudit.so correctly installed.
Just/lib/secure/libapaudit.so correctly installed.
/usr/lib/64/libapaudit.so correctly installed.
lusr/lib/secure/64/libapaudit.so correctly installed.

4. Log off root on this machine.
5. You will need to do this on each machine on which you use RootCause.

6. After doing this, you will need to dmotcause_off , thenrootcause_on
again to pick up the new values.

Description of Solaris Security

This section briefly describes the Solaris security measures that are appropriate
for RootCause / Aprobe. It should be noted that each version of Solaris has it's
own subtle variations on this. All examples given are for Solaris 8 and over
although, with the exception of Solaris 2.5.1, RootCause and Aprobe can be
expected to behave identically on older versions as far as security goes. (Solaris
2.5.1 has overly tight restrictions that were corrected in later versions).

The first concept that must be understood is that every executable run has two
users associated with it at runtime. The first is the “real” user, the logged in user -

10-4 Selected Topics

Solaris SETUID, and Security Concerns

the user shown when you use the command “id”. The second is the “effective”
user which really governs the permissions you have during runtime.

(One important point is that if the real user is root, all security mechanisms are
effectively disabled because they are moot. One practical result of this is that you
may use Aprobe on any application if you are logged in as root).

Normally the real and the effective user are the same. If, however, the setuid bit is
set on an application, the operating system changes the effective user to match
the owner of that application. Most commonly this is the root user and is done to
give a regular user temporary access to a limited set of secure resources.

Let's take the “/usr/bin/at” command as an example. The output from “Is -I”
might look like this:

-rwsr-xr-x 1 root sys 37876 Jul 10 2000 /usr/bin/at

Note that instead of an ‘x’ where we would expect the owner’s executable bit, we
see a ‘s’. This means that the application will run with the effective user root,
with all the permissions that that allows.

What would happen if we were allowed to attach a debugger to this application?
Suddenly we would be able to cause the application to execute arbitrary instruc-
tions as if it were root! To prevent this, the operating system will prevent the
debugger interface being used in such a situation. (Again, if you are actually
logged in as root, you will be allowed access).

Another aspect of security for these applications is where they load their libraries
from. Obviously the application can have a set of specific libraries linked in and
these can be safely loaded. But the runtime linker also provides some capabilities
to add arbitrary shared libraries in using tile PRELOACandLD_AUDIT runt-

ime linker environment variables. Once again it would be a security risk if any
library could be specified, so the operating system only allows libraries in
“secure” paths to be loaded by these environment variables.

Impact of Security Measures on Aprobe

When we run the “aprobe” command on an executable, we start out life as a
debugger, patching in the probes that we've specified. Once this is done, the
“aprobe” executable detaches from the application and goes away. As was men-
tioned above, Solaris will not allow the use of the debugger interface on a secure

Selected Topics 10-5

Solaris SETUID, and Security Concerns

application. Aprobe will specifically check for this so it can give a more friendly
warning if you try to run it:

$aprobe /usrbin/at

(E) lusrbirvat

This file is owned by root and has the setuid bit set.

You need to use the secure version of aprobe (saprobe) to runthis

application under Aprobe. Please see the section on secure applications
inthe Aprobe user's guide.

As this error describes, there is a secure version of Aprobe that allows us to run
on these applications. In fact, there are three ways we could run this application:

1. Login asroot. As was mentioned above, security restrictions are moot for
the root user and so Aprobe will run fine.

2. If you could rebuild or relink the application, you could link in the libdal.so
file that allows an executable to patch itself. The use of this is outside the
boundaries of this document but you can find more details in the Aprobe
user’s guide.

3. Use the secure version of Aprobe mentioned abezgrebe . The secure
version itself has the setuid bit set so that it runs as root and can attach to the
application.

It doesn't take much thought to realize that option (2), if implemented blindly,
could leave a big security hole in your application. But, of course, it isn’'t imple-
mented blindly. When you rusaprobe on an application, the application must

be listed iINSAPROBE/lib/secure_applications . This file is created so that

it is only writable by root and we check this is still the case at runtime before
allowing its use. Let's see what happens when we try to run without an entry for
it:

$ saprobe usrbin/at

(W) fusrbirvat

You are running a secure application but the secure_applications file

did not contain an entry for it

(F) Aprobe will not run this application due to security restrictions.

Please see the section on secure applications in the Aprobe user’s guide.

The second level of checking is that the files loaded by Aprobe - the runtime
libraries and the UALs - must all be owned by root and not writable by anyone
else. Additionally, for all UALs except the default system_ual, an entry for them
must exist in theecure_applications file under that application. If it

doesn't:

10-6

Selected Topics

Solaris SETUID, and Security Concerns

-utrace fusrbin/at
(W) "/appl/aprobeinstfred/aprobe_sun 50/ual_libfrace.ual’:
This ual is not valid for your secure application. it must be listed in
the secure_applications file under this application.
(F) Aprobe will not run this application due to security restrictions.
Please see the section on secure applications in the Aprobe user’s guide.
The format of thesecure_applications file is defined in its header. However,
it is pretty trivial. For each application we allow we have an “APPLICATION”
keyword followed by any number of “FILE” keywords. Another APPLICATION
keyword automatically ends the list of allowed files. For instance:

APPLICATION /usrhin/at

FILE /appl/aprobefinstfred/aprobe_sun 50/ual_libfrace.ual
FILE /optiproduct/probes/imyprobe.ual

APPLICATION /usrhin/another_app ...

Impact of Security Measures on RootCause

RootCause builds on top of Aprobe and so has the same protections described
above. However, the RootCause intercept mechanismis based on the LD_AUDIT
environment variable and must be managed appropriately.

By default, if you set LD_AUDIT to a specific path, Solaris will not load that
audit library when the application is run. Annoyingly, later versions of Solaris
give a misleading error message about this being a fatal condition which it isn’t!

If, however, the audit library is in a secure location and the LD_AUDIT environ-
ment variable is appropriately set, it will be loaded by the runtime linker. The
path to that library varies between versions of the O/S but, on Solaris 8 and
higher, is /usr/lib/secure.

So, to allow RootCause to intercept secure applications, the audit library is
placed within here. In order that this does not create a security risk in itself, Root-
Cause ensures that it will only run an application under RootCause if the work-
space’s script file is secure. If it isn’t, you'll get an error message and the
application will be run without RootCause.

By this mechanism, we safely control access to the scripts that will execute
Aprobe and trigger the protections that Aprobe introduces.

Selected Topics 10-7

Solaris SETUID, and Security Concerns

Using the Secure Version of RootCause / Aprobe

The first step that must be taken is to provide appropriate ownership, permissions
and location of certain RootCause files. A normal installation of RootCause does
not have a secure version of Aprobe, it doesn’t locate the audit libraries in secure
paths and it may not have appropriate ownership of runtime libraries and UALSs.

To create a secure environment, you must log in as root and run the
rootcause_libpath script. This takes a number of parameters and must be run
on each machines on which you wish to use the secure version of RootCause.

There are two main parts to this:

1. Creation ofthe secure Aprobe files. This must be performed once foragiven
installation of RootCause / Aprobe. In many networks it must be done on
the machine that the installation is directly mounted on (e.g. many NFS
mounted filesystems do not allow root write access from across the net-
work). The command to update the installation is

rootcause_libpath -s

This is described in more detail fAvoiding Solaris Warnings" on page
10-3

2. Creation of the secure RootCause files. This must be performed once on
each machine you wish to intercept secure applications on. To command to
do this is

rootcause_libpath -c

Note that you can combine this and the “-s” option where appropriate.

A secondary step for RootCause is to define the workspace as secure. When cre-
ating a workspace, check the “Secure Application” checkbox to mark the work-
space as secure. This will create runtime scripts that invoke the secure version of
Aprobe. If, at a later time, you wish to change the security property of the work-
space, you can change it in the Aprobe options tab of the RootCause options dia-
log (accessed from the Setup menu).

Note that if you build a secure workspace for a non-secure application or vice-
versa, you will get error messages at runtime.

10-8

Selected Topics

64 bit applications

64 bit applications

Logging Controls

Multiple Application
Tracing

64 bit applications are not yet supported by RootCause. If you require this sup-
port, please let us know.

One of the most fundamental features of RootCause is a robust and fast logging
mechanism, both for persistent and wraparound data collection.

RootCause chooses sane defaults for logging, but you may want to change them.
There are several main user-selectable options for logging application data pro-
vided in theRootCause Options Dialog

See"'RootCause Data Management" on pagef8r4nore information.

Each application puts its trace data into an application specific workspace. This
mapping of application to workspace is defined in the registry.

When viewing trace data, RootCause can add trace data from other applications/
workspaces, so that you can view a fully integrated process trace. The traces are
automatically ordered so there is a coherent time line for all traced applications.

RootCause collects data into separate files to eliminate contention for a single
logging buffer. For example, if you are tracing 10 processes and all 10 are trying
to write to the same buffer, then there will be much contention for that buffer and
performance would suffer. RootCause solves this problem by logging the data
into independent application specific workspaces and then combining the traces
in the GUI viewer.

A trace is merged with an existing trace usingAld Selected Process Data
operation in th@race Display Popup Merf theTrace Displaywindow. You
can then us8ave As XMlor Save As Textb save this merged trace for future
examination.

This is illustrated by the Advanced demo delivered with RootCau$amROBE/
demo/RootCause/Advanced . See the README.html file in that directory for

a detailed description of that application, the separate Java and C++ portions, and
the merging of combined traces.

The ability to view a single time line trace of multiple processes (even on SMP
computers) is a very powerful feature of RootCause.

Selected Topics 10-9

Multiple Executions of a Single Application

Multiple Executions of
a Single Application

It is not uncommon in production environments for a single application to have
multiple processes executing simultaneously. RootCause handles this by tracing
each process independently.

As mentioned previously, eaelpplicationhas avorkspaceln the workspace
there are a number of setsRybcess Data Set

RootCause automatically reuses the oldest of these process data sets upon each
new invocation of the registered application. The number of process data sets to
keep is specified withKeep logged data for N previous processeshe Root-

Cause Options Dialog

So if you wish to trace a total of 10 simultaneous executions of your application,
you will tell RootCause to create least10 process data sets in the workspace.
Note that this mechanism can also be used to save serial executions of a process
too. For example, if you would like to trace the last 4 executions of the registered
application, tell RootCause to keep 4 previous processes.

See"'RootCause Data Management" on pagef8r4nore information.

10-10

Selected Topics

Libraries with No Debug Information

Libraries with No
Debug Information

The RootCause Console GUI takes advantage of Aprobe’s APC translator to pro-
vide function prototype information for C object moduleshmadow header fie

A shadow header file is a legal C header file, containing C type and function pro-
totype definitions and C preprocessor directives (su¢inasde). The infor-
mation in this file supplements the information in a compiled object module of
the same name, resulting in more useful traces and custom probes.

When you click on the name of a compiled module, diy¢'so ", in the Trace

Setup Dialogthis causes that module to be opened and searched for debug infor-
mation provided by the compiler. Therstzadow header fileorresponding to

that module--in this case, “libc.so.h"-- is searched for, and if found, the informa-
tion found there correlated to the symbols read from the module. This results in
otherwise “unknown” functions being grouped according to the header file from
which they are read, and having parameter type (and often name) information.

Shadow header files are searched for in a “shadow” subdirectory gbtiteause
Directory(e.qg., ~/.rootcause/shadow/libm.so.h), and if not found there, in
$APROBE/shadow.

OC Systems provides only one or two sample shadow header files on each plat-
form. You're encouraged to add your own, and to contact OC Systems if you
need help developing a header file for a particular library. Note that you don't
have to provide all the prototypes in the library, only those you need. Conversely,
if there are a few extras that aren't in the shadowed library that's okay, too --
they’ll be ignored.

The easiest way to create such a file is simply to#aatide preprocessor
directives for existing C header files provided with your system or compiler. Note
that these must be C header files endingrin not C++ header files. These are
preprocessed using the same environment (include path and preprocessor defini-
tions) as th&PC files, but you can edit the files and add your @define

directives as necessary.

Selected Topics 10-11

Your Application and Different JREs

Your Application and If you've defined traces for a Java class in a workspace, but if after running the

Different JREs application under RootCause, the RootCause Log shows only an
APP_STARTED (but not an APP_TRACED) event for the java program, this
indicates that it wasn't recognized as Java. There could be several reasons for
this:

1. Theversion of Java you're running isn’t supported. Check the program name
in the rootcause log entry against the supported JREs identifiggstem
Requirements” on page 2-2

2. The JRE hierarchy in which RootCause looks for files was unusual, so Root-
Cause could not find the necessary files. In this case you can explicitly regis-
ter the JRE with the java executable usingrtd@cause registearommand.

This is done automatically when applying a workspace to a class in the GUI,
but the JRE in the execution environment may be different.

3. The program which is running your class isn't “Java”, but some other pro-
gram which loads a Java plug-in or DLL. Skksing RootCause on an Ap-
plication with an Embedded JVM” on page 10-12

Using RootCause on RootCause currently supports probing applications that process Java by using the
an Application with an Sun version 1.2, 1.3 or 1.4 Java runtime ("libjvm.so") library. To do this:
Embedded JVM « You will need a license for both RootCause for C++ and for RootCause for

Java; contact OC Systems if you have questions about this.
e Set up a workspace for the application with the embedded JVM.
e Use “Add Dynamic Module” to add a Java class you wish to trace.

* When prompted, specify the full path to thigvm.so library that the pro-
gram uses.

e Setup atrace and run as usual.

10-12 Selected Topics

Tracing Java and C++ In One Program

Tracing Java and C++
In One Program

RootCause is designed to support both Java and compiled-language probes and
traces in a single application. To do this, you will need a license for both Root-
Cause for Java and RootCause for C++; contact OC Systems if you have ques-
tions about this. The RootCause GUI itself is an example of mixing Java and C
in an application. It is implemented in Java, but has significant portions of its
functionality implemented in C, which is dynamically loaded by Java. To see
the Java/C interaction in a trace, one would:

1. Open a Java Workspace for the Java main class of the application.

2. UseWorkspace-Add Dynamic Moduléo specify the dynamic C/C++ li-
brary that will be loaded.

3. Click Setup to show the Java classes and dynamically loaded module, and de-
fine your traces as usual.

Another common scenario is when a C++ application creates another process to
act as its GUI, and communicates with it by sockets. In this case, one creates
separate workspaces for the compiled and Java parts of the application, and
merges the results, as described in “Multiple Application Tracing” on page 10-9.

Selected Topics 10-13

RootCause J2EE Support

RootCause J2EE
Support

RootCause will work with any J2EE-compliant Enterprise Java Application
Server that uses a standard JRE from Sun (version 1.2 or higher). This includes
Sun iPlanet 6.5 and AS7, BEA WebLogic 5.1, 6.1 and 7, and JBOSS 3. It will
also work with standalone Web Servers such as TomCat.

RootCause can trace an Application Server that is run as a standalone Java JVM
(using the java executable) or it can trace a JVM that is embedded within a native
executable.

If the Application Server runs as a standalone Java JVM, you can create a work-
space just like any other Java application. Make sure RootCause is enabled in the
shell or environment you are running the Application Server JVM. Run the
Application Server, and find the Java APP_START event iffthee Display

window.

Note you may need to increase the application server’s Java heap size to accom-
modate RootCause tracing overhead; check your app server documentation.

In theNew Workspace Dialaghere is an option for “J2EE Server Directory”.

Enter the directory where deployable Enterprise Java Bean (EJB) and Servlet
classes and jars reside. RootCause will automatically add EJB and Servlet classes
and jars that are specified in any J2EE compliant XML deployment descriptors.

Once a Java workspace has been created and opened, the J2EE Modules directory
can be changed to another location, or the current directory can be searched again
for updated or new J2EE applications. This can be done Wmate J2EE Mod-

ulesin theWorkspace Menu

If the Application Server runs embedded within a native executable, you can cre-
ate a workspace for the native executable, and then atibjtine library as a
dynamic module. First create a workspace for the executable that runs the Appli-
cation Server as you would for any other. The open the Trace Setup window.

An Application Server might run an embedded JVM, but already Ihgwe
library loaded as a dynamic module. If this is the casdibje library will
show up in the list of loaded libraries in theace Setup Dialag

If libjvym does not appear as a statically-loaded module in Trace Setup, you must
find the server version of thiejym library (ibjvm.so on Solaris,

libjvm.dll on Windows). Once this module has been found, it can be added
usingAdd Dynamic Moduldn theWorkspace Menu

10-14

Selected Topics

RootCause J2EE Support

Once thdibjvm module is shown in the Trace Setup window, you can complete
the J2EE configuration from the main workspace window udpdpate J2EE
Modules

Selected Topics 10-15

RootCause Shipped as Part of Your Application

RootCause Shipped as
Part of Your
Application

RootCause is designed to solve problems from a single occurrence while simulta-
neously reducing support costs. While you can wait until a user reports a problem
and then use RootCause to debug it, it is an intended use of RootCause that you
include it as part of your application, so your application is always logging trace
data. Whenever a user encounters a problem, they merely send you the Root-
Causecollectfile, and the root cause analysis of the problem is performed from
that file. This greatly simplifies the reporting and debugging of problems. In
some cases, for particularly difficult problems, you may have to send a more
focused trace to the user site to complete the analysis of the problem, but the
RootCause workflow is optimized to do this.

If you plan to include RootCause as part of your shipped application, we suggest
that you contact OC Systems support to enter into a discussion with one of our
technical staff. It is not difficult, but we can discuss various issues with you to
save time and effort.

10-16

Selected Topics

CHAPTER 11

Custom Java Probes

A Simple Example

Write the Probe In Java

In addition to the built-in traces and actions available in the RootCause GUI,
RootCause also supports inserting arbitrary “probes” into an application. This
allows for custom statistics-gathering, or even modifying the flow of the pro-
gram.

The custom probes are themselves written in Java, and are activated by specify-
ing them in adeployment descriptor filevhich is anXML file with the suffix
Xmj.

This chapter describes how one writes these files though a graduated series of a
examples. The source text for these examples is found on-line in the directory:
$APROBE/demo/RootCause/Java/Custom.

Let's start with a simple example of how to do this, using the same Pi demo sup-
plied with RootCause that was usedinapter 5, "RootCause Demo"

1. Create a file calledlyFirstProbe.java as shown below.

This probe will print messages whenever a method to which it is applied
gets called.

11-1

A Simple Example

import com.ocsystems.aprobe.*;

public class MyFirstProbe extends ProbeMethod
public boolean onEntry (Object[] parameters)
{

System.out.printin("Hello world (from my probe)!");

for(int i=parameters.length-1; i>=0; i--)

{
System.out.printin(
"Parameter #" + i+ "is " + parameters[i]);
}
return true;
}
public Object onExit (Object returnValue)
{
System.out.printin("Goodbye world (from my probe)!");
System.out.printin("Return value was: " + returnValue);
return returnValue;
}
public void onExit () / no return value
{
System.out.printin("Goodbye world (from my probe)!");
}
public void onExceptionExit (Throwable e)
{
System.out.printin(
"Goodbye world (from my probe), due to exception:");
System.out.printin(e);
}

MyFirstProbe.java

Note that although all this probe does is make some calls to prigyssia
tem.out.println() , probes may contain arbitrary Java code, to do whatever
you want.

You can create any of your own probes to be applied to methods simply by
extending the clas®m.ocsystems.aprobe.ProbeMethod , and overriding
theonEntry() ,onExit() andonExceptionExit() methods, as shown

11-2

Custom Java Probes

A Simple Example

above. As you can see, your probe has access to the parameters and return value
of the method it is probing.

2. Then compile thisMyFirstProbe.java . You must specify to the java com-
piler where it can find the classes in the packeg®a.ocsystems.aprobe
Do this with the command

javac -classpath $APROBE/lib/aprobe.jar MyFirstProbe.java
This will createMyFirstProbe.class
3. Copy the .class file into the workspace directory of the workspace you wish

to use. Your workspace from the Pi example from previous chapters would
be an appropriate place.

Write an XMJ File Now that we have written a probe, how do we specify where this probe is to
apply? This is done with axMJ file or deployment descriptor filas follows.

4. Inthe workspace directory, create another file, callgdirstProbe.xmj
with the following contents:

<probe_deployment>
<probe class="MyFirstProbe">
<target value="Pi::main"/>
</probe>
</probe_deployment>

MyFirstProbe.xmj

This indicates that the probe contained in the class MyFirstProbe should be
applied to the methodain() in target clas®i . You could pick any method in
any class that interested you.

Update the Workspace 5. Copy thexmj and.class files into thePi.aws directory.
The workspace directory is added the the classpath when you run with Root-
Cause, so you're ready to run if you have copied ygags and xmj files to

the workspace directory.

NOTE: If you put your custom probes in a JAR file, you'll need to rebuild the
workspace to cause that to be added to the classpath (or you can add it explicitly

Custom Java Probes 11-3

Applying One Probe to Many Methods

to your ‘java’ command if that’s convenient. To pick up a JAR file in the work-
space, you can rebuild the workspace from the command-line with:

rootcause build Pi.aws

If you have the RootCause console open, you can just clidkuihe button.

Run With RootCause 6. Runthe Piprogram under RootCause. You may do this either by pressing the
Run button in the RootCause GUI, or by turning RootCause on and running
the program from the command line as describéd nace With RootCause”
on page 5-10

You will see the output from MyFirstProbe Risnain() is executed.
Applying One Probeto You may wish to apply a probe to many different methods. There are several

Many Methods ways to do this with the .xmj deployment descriptor file, without changing the
Java at all: wildcards, target lists, and using multiple .xmj files.

Wildcards You can use a wildcard string as the target value in your file to accomplish
this, as shown below:

<probe_deployment>
<probe class="MyFirstProbe">
<target value="*:*"/>
</probe>
</probe_deployment>

WildcardExample.xmj

UsingWildcardExample.xmas the deployment descriptor file will cause every
method to have MyFirstProbe applied to it.

The class, the method, or both can be a wildcard. All of the following are valid:
* Probe all methods in all classes, as shown above:

<target value="*::*"/>
* Probe all methods in a given class:

<target value="Classname::*"/>

11-4 Custom Java Probes

Using Method IDs

Lists

Multiple XMJ Files

Using Method IDs

e Probe all methods named “foo” in any class:

<target value="*::foo"/>

You can define a list of targets, and reference that list as the target of a probe, as
shown inListExample.xmjbelow:

<probe_deployment>
<target_list_definition name="ListExampleList">
<list_target value="Pi::calc_pi"/>
<list_target value="Pi::main"/>
</target_list_definition >

<probe class="MyFirstProbe">
<target_list name="ListExampleList"/>
</probe>
</probe_deployment>

ListExample.xmj

This deployment descriptor file shows how to construct a list. This example
would apply MyFirstProbe to two methodsain() andcalc_pi()

All .xmj files in the workspace directory are automatically detected and applied.
so you could simply make a copy of one file, change the target name, and you'll
pick up both target methods on the next run. Conversely, any .xmj files you do
not wish to use must be removed from the workspace.

If you ran the introductory example, and applied the single probe to a number of
different target methods, you may have noticed that the output can be a bit hard to
figure out, because all of the methods being probed are producing the same out-
put. However, there is built-in support to identify different target methods. Each
one has a unigumethod ID and your ProbeMethod knows the ID of the target
method upon which it is acting.

In addition, the classom.ocsystems.aprobe.SymbolTable contains a vari-
ety of utility functions for manipulating method IDs. The most immediately use-
ful such isgetPrintableMethodName() . It converts a method ID to a String
containing the name of the method. The method ID itself is retrieved by the

Custom Java Probes 11-5

Using Method IDs

invoking the probe’s owpetMethodld() method, which is inherited from the
classcom.ocsystems.aprobe.ProbeMethod

This next probeExample2.java , usesom.ocsystems.aprobe.SymbolT-
able.getPrintableMethodName() and a probe’s method ID to make very
clear the program flow in the target:

import com.ocsystems.aprobe.*;

public class Example2 extends ProbeMethod

{

private String methodName = "(unknown)";

private void printEvent(String event)

{
System.out.printin(

event +" (in method " + methodName + ")");

}

public boolean onEntry (Object[] parameters)
methodName =

SymbolTable.getPrintableMethodName(getMethodId());

printEvent("Method Entry");
return true;

}

public Object onExit (Object returnValue)

{
printEvent("Method Exit");
return returnValue;

}

public void onExit () // no return value
printEvent("Method Exit");

public void onExceptionExit (Throwable e)
printEvent("Method Exit via exception™);

}

Example2.java

11-6 Custom Java Probes

Logging Data from Java

This example also shows that your probe class is just another class. You can
define any of your own fields and methods in it, and use them as you would in
any other class, just as we did here witthodName andprintEvent()

Logging Data from So far, we have sent all output from our probeSykiem.out . This mixes up

Java the probe’s output with the application’s output, and makes post-runtime analysis
more difficult. As you've seen in earlier chapters, RootCause nortogiydata
at runtime to be examined later. You can use the same mechanism in your custom
probes. This is used most easily through the class
com.ocsystems.aprobe.Logger.

The following probe uses the methiod() in that class to record information
which will then be displayed when té>D file is formatted and examined.

import com.ocsystems.aprobe.*;
public class Example3 extends ProbeMethod
public boolean onEntry (Object[] parameters)

Logger.log("Hello world (from my probe)!");
return true;

}

public Object onExit (Object returnValue)

Logger.log("Goodbye world (from my probe)!");
return returnValue;

}

public void onExit () / no return value

Logger.log("Goodbye world (from my probe)!");

public void onExceptionExit (Throwable e)

Logger.log(
"Goodbye world via exception (from my probe)!");

Example3.java

Custom Java Probes 11-7

The onLine() Method

The onLine() Method The probes that we have seen so far perform actions only on entry to, and exit
from, the target methods. It is also possible to probe individual source lines of a
methodif it has been compiled with debugging informati@sually using “javac
-g”). This is done using the methodLine() , as shown ifExample4.java
below.

import com.ocsystems.aprobe.*;
public class Example4 extends ProbeMethod
{

private String methodName = "(unknown)";

private void printEvent(String event)

{
System.out.printin(
event +" (in method " + methodName + ")");
}
public void onLine (intlineNumber)
{
printEvent("Line # " + lineNumber);
}
public boolean onEntry (Object[] parameters)
methodName =
SymbolTable.getPrintableMethodName(getMethodId());
printEvent("Method Entry");
return true;
}

public Object onExit (Object returnValue)

printEvent("Method Exit");
return returnValue;

}
public void onExit ()
{
printEvent("Method Exit");
public void onExceptionExit (Throwable e)

printEvent("Method Exit via exception");

11-8 Custom Java Probes

The onLine() Method

Enabling Line Probes

Example4.java

If not applied selectively, line probes can seriously impact performance. For this
reason, line probing is turnedf by default.

Thus, in order for thenLine() method to be called, you must specify that your
probe needs to access lines. This is done in the deployment descriptor (.xmj) file,
using the attribute “lines” in the <probe> tag, as showmiample4.xmj below.

Valid values for the “lines” attribute are “TRUE” or “FALSE”". If you do not
specify a value, “FALSE” is assumed.

<probe_deployment>
<probe class="Example4" lines="TRUE">
<target value="Pi::main"/>
</probe>
</probe_deployment>

Example4.xmj

Custom Java Probes 11-9

Advanced Custom Java

Advanced Custom
Java

ProbeBeans

So far, all the examples have been, in certain ways, pretty simple and straightfor-
ward. Each probe is independent. Each applies to certain methods, and a new
probe instance is created every time one of those methods is invoked. You've
simply specified the name of the probe, and its targets, in the deployment descrip-
tor, and RootCause did the rest automatically.

Under the covers, however, what's going on is quite intricate. For each method
being probed, there exists what we call a “trigger”, which, essentially, works as a
“factory” for probes. When the method is invoked, this trigger gets, well, trig-
gered, and then, by default, creates an instance of the appropriate probe.

This structure allows enormously powerful customizations. Triggers can create
probes only conditionally. Triggers can be enabled or disabled. Triggers can be
removed entirely from association with a method, and new triggers can be cre-
ated dynamically.

How does one use this power? With a “ProbeBean”. What is a “ProbeBean”? Itis
a class, derived from com.ocsystems.aprobe.ProbeBean, that groups together
related code, data, triggers, and probes. ProbeBeans are created and initialized
when the Java application first starts (while RootCause is on), and they in turn
create the triggers that create the probes. Every probe is created by a trigger, and
every trigger belongs to a particular ProbeBean.

There are a couple of places where you would want to use a “ProbeBean” instead
of the simpler method described earlier:

e you can collect data on a per-thread basis; and

e sophisticated probes can be structured more easily, e.g., the number of class
files can be reduced for the probes and data can be more easily shared among
probes.

In the examples we've seen so far, an automatically-created ProbeBean created
triggers to invoke the probes you specified in your deployment descriptor file.
The filesMyFirstProbeBean.javandMyFirstProbeBean.xntpelow show how

you would manually create and deploy a ProbeBeaN{&iirstProbe.java

shown at the start of this chapter.

11-10

Custom Java Probes

Advanced Custom Java

<probe_deployment>
<bean class="MyFirstProbeBean">
<instrument_target>
<target value="Pi::main"/>
</instrument_target>
</bean>
</probe_deployment>

MyFirstProbeBean.xmj

In MyFirstProbeBean.xmje use the tag <bean>, and the attribute “class” to
specify which class is the ProbeBean to load. Jthejet> tag looks familiar,

but what is<instrument_target> ? Since the deployment descriptor no longer
directly causes the creation of probes, we don’t know which classes we need to
add “hooks” to. Thesinstrument_target> tag indicates that RootCause must
add its hooks to the targets (or target lists) specified.

Note thatkinstrument_target> doesnot create any triggers or probes, the
way a<probe> tag does. The creation of triggers and probes is left up to the
ProbeBean itself, as shownMyFirstProbeBean.javhelow.

The tag<instrument_target> also accepts the attribute “lines” just as
“probe” does, so that line probes may be added.

import com.ocsystems.aprobe.*;
public class MyFirstProbeBean extends ProbeBean

{
public void onEntry ()
int targetID = getTarget();
new ProbeTargetTrigger(targetiD)

public Probe createProbe()

{
h

return new MyFirstProbe();

h
}

Custom Java Probes 11-11

Advanced Custom Java

Parameterizing Probes

MyFirstProbeBean.java

Let’s look more closely at MyFirstProbeBean, which is as simple as it gets.
When the deployment descriptor is read, RootCause will create an instance of
any ProbeBean specified with thgean> tag, and invoke itsnEntry()

method. The ProbeBean needs to know what methods to apply itself to, so it can
create the appropriate triggers. This is done with the megktddrget()

which returns an ID corresponding the group of methods specified within an
<instrument_target> tag in the .xmj file. The ProbeBean then creates a new
trigger, derived from ProbeTargetTrigger and applied to that target, which in turn
creates probes of the class MyFirstProbe. The fact that our new trigger is a Probe-
TargetTrigger causes it to automatically apply itself to all the methods repre-
sented by the target ID, and itgateProbe() method gets invoked whenever

any of those methods does.

That's probably more than you wanted to know, but this allows you to explore the
power of ProbeBeans further in the next example.

Once you've compiled your ProbeBean and Probe Java code, you can still greatly
vary their behavior through the deployment descriptor. The obvious way we've
already seen is by changing the target methods to which your probes apply. You
can also, however, pass arbitrary other parameters to your Probe or ProbeBean
via the deployment descriptor, using #parameter> tag. This pair of exam-

ples will show how to do that, for a ProbeBean or for a stand-alone Probe.

<probe_deployment>
<bean class="Example6ABean">
<parameter name="ReallyHaveProbes" value="true"/>
<instrument_target>
<target value="Pi::main"/>
</instrument_target>
</bean>
</probe_deployment>

Example6a.xmj

11-12

Custom Java Probes

Advanced Custom Java

As you can see, theparameter> tag has two attributes, “name” and “value”;
both are required. IBExample6ABean.javbelow, we’ll see how the ProbeBean
can reference and use the parameter we've defined.

Custom Java Probes 11-13

Advanced Custom Java

import com.ocsystems.aprobe.*;
public class Example6ABean extends ProbeBean

public void onEntry ()

{
String reallyHaveProbesString =
getParameter("ReallyHaveProbes");
boolean reallyHaveProbes =
(Boolean.valueOf(reallyHaveProbesString)
).booleanValue();
if(reallyHaveProbes)
int target = getTarget();
new ProbeTargetTrigger(target)
public Probe createProbe()
{
return new Example4();
I3
I3
}
else
System.out.printin(
"Probes disabled by parameter in deployment!");
}
}

}

Example6ABean.java

The ProbeBean retrieves the value of a parameter, as a String, by name, also a
String. This name passeddetParameter() must exactly match the attribute
“name” in the<parameter> tag.

This method of parameterization via the deployment file may also be used with-
out ProbeBeans, as shown on the following pages:

11-14

Custom Java Probes

Advanced Custom Java

<probe_deployment>
<probe class="Example6BProbe">
<parameter name="BeVerbose" value="true"/>
<target value="Pi::main"/>
</probe>

</probe_deployment>

Example6b.xmj

The parameter is specified the same way here, but nested within the “probe” tag
rather than thebean> tag. The mechanism by which a Probe retrieves the
parameter is shown EBxample6BProbe.java

Every probe has a field which references the trigger that created it, and every trig-
ger belongs to a bean. Here, even though we did not create a custom bean explic-
itly, a default bean was created for us by RootCause. It is through this bean that a
probe accesses its parameters. Here, the probe uses the value of the parameter t
decide how much information to display.

Note that although both of these examples used the parameter as a boolean value,
you are not restricted to that. Parameters could represent names, numerical val-
ues, etc. You may have multiple parameters for a single bean or probe, as long as
each parameter has a unique name.

Custom Java Probes 11-15

Advanced Custom Java

import com.ocsystems.aprobe.*;
public class Example6BProbe extends ProbeMethod

boolean beVerbose;

public boolean onEntry (Object[] parameters)
{
System.out.printin("Entering a method.");
String beVerboseString =
trigger.bean.getParameter("BeVerbose");
beVerbose =
(Boolean.valueOf(beVerboseString)
).booleanValue();
if(beVerbose)
for(int i=parameters.length-1; i>=0; i--)
{
System.out.printin(
"Parameter #" + i + " is " + parameters][i]);
}
}
return true;
}

public Object onExit (Object returnValue)
{

System.out.printin("Exiting a method.");
if(beVerbose)

System.out.printin(
"Method’s return value is: " + returnValue);

}

return returnValue;

}

// exercise for reader:
// provide other onExit, onExceptionExit methods

Example6BProbe.java

11-16

Custom Java Probes

Advanced Custom Java

Working with Threads In addition to methods, RootCause can also track threads. In fact, unless you
specify otherwise, all your method probes are actually created within the context
of a default thread probe! But you can also create your own thread probes to get
more information about your multi-threaded applications. Thread probes are cre-
ated by a thread trigger every time the JVM creates a new thread. The thread trig-
ger is typically created via a ProbeBean.

You can use thread probes in order to keep track of data on a per-thread basis.
Like method probes, thread probes haverdintry() method. All thread
probes derive from the classm.ocsystems.aprobe.ProbeThread

Athread probe is created by a ProbeThreadTrigger. Our ProbeBean creates a new
such ProbeThreadTrigger that will create instances of our ProbeThread class.

Example7Bean.jayan the next page, tracks the beginning of all threads, and
counts calls to methods within each of those threads. EXample7.xm;j
deployment description file applies this thread tracking to all methods in the Pi
class.

<probe_deployment>
<bean class="Example7Bean">
<instrument_target>
<target value="Pi::*"/>
</instrument_target>
</bean>
</probe_deployment>

Example7.xmj

Custom Java Probes 11-17

Advanced Custom Java

import com.ocsystems.aprobe.*;

public class Example7Bean extends ProbeBean

{
int target;
static int numberOfThreads = 0;

class Example7ThreadProbe extends ProbeThread

{

int threadNumber;
int callsInThisThread;

class Example7MethodProbe extends ProbeMethod
public boolean onEntry(Object[] p)
callsInThisThread++;
System.out.printin(
"Call # " + callsInThisThread +

"in thread # " + threadNumber);
return true;

public void onEntry () // thread entry
threadNumber = ++numberOfThreads;
System.out.printin(
"Hello from start of thread # " + threadNumber);

new ProbeTargetTrigger(target, this)

public Probe createProbe()

{

}
b

}
} //end ProbeThread

return new Example7MethodProbe();

11-18

Custom Java Probes

Advanced Custom Java

public void onEntry () // bean entry

{
target = getTarget();
new ProbeThreadTrigger()
public Probe createProbe()
{
return new Example7ThreadProbe();
}
2
}
}
Example7Bean.java
Dynamic Probe Triggers include the ability to be activated and deactivated dynamically.
Deactivation Example8.javan the next page shows a probe that will only be called once per

thread, because the first time it is invoked, it disables the trigger that created it.

Of course, you don’t have to restrict your logic to turning the trigger off immedi-
ately. You could set whatever conditions you like, such as after 100 iterations, or
when a buffer fills up.

Custom Java Probes 11-19

Advanced Custom Java

import com.ocsystems.aprobe.*;
class MyMethodProbe extends ProbeMethod

public boolean onEntry (Object[] p)

{
System.out.printin(
"You should only see this once per thread!");
getTrigger().disableProbe();
return true;
}
}
public class Example8 extends ProbeBean
public void onEntry() // bean entry
{

int target = getTarget();
new ProbeTargetTrigger(target)

public Probe createProbe()

{
return new MyMethodProbe();

Example8.java

11-20 Custom Java Probes

Index

A
actions, 3-9, 8-24
add dynamic module 8-5
Add From Data Files To Display 8-36
Add From Index To Display, 8-36
Add Process 8-30
Add Process Data 8-34
Add Process Data Dialog 8-30
Add Selected Process Data8-36, 10-9
Add UAL, 8-7
Add Ual Dialog, 8-11
Additional Aprobe Options, 8-15
ADI file, 3-9
agent 3-9

RootCause, 2-1, 2-7
agent license 6-3
agent_license.dat 6-3
AlIX, 2-2, 4-4,5-10, 7-8, 8-47
apaudit, 4-4
APC, 3-9
APD file, 3-3

name, 8-14

number, 8-14

size, 8-14
APD ring, 3-3, 3-9, 8-14

apformat, 3-3
Apformat Options Tab, 8-15
Apformat Parameters, 8-11, 8-18
APP_START, 5-4, 7-3, 8-36, 8-40
APP_TRACED, 7-3, 8-36, 8-40
application, 3-2, 3-9
Application, in Trace Index, 8-32
Apply button, 8-26
APROBE, 7-5
aprobe, 7-8

-d option, 8-14

-k option, 8-14

-n option, 8-14

-gstack_size option, 8-15

-s option, 8-14

secure, 10-6

-t option, 8-14
Aprobe Options Tab, 8-14
Aprobe Parameters 8-11, 8-17
aprobe.jar, 11-3
APROBE_HOME, 2-8, 7-4, 7-5
APROBE_JAVA_HEAPSIZE, 7-5
APROBE_JRE, 7-5, 8-47
APROBE_LOG, 2-8, 4-2, 7-6
APROBE_MONOSPACED_FONT, 8-48
APROBE_REGISTRY, 2-8, 4-2, 7-3

Index-1

Index

APROBE_SEARCH_PATH, 7-6
APROBE_WM_WORKAROUND , 8-48
Autoload Output, 8-19

.aws directory, 3-13

B

background color, 8-49

bash 9-2

blue dots 8-22

Build, 5-14

Build Options Tab, 8-14

Build, after Save As 8-4

Build, in Setup meny 8-7

build, rootcause subcommand 9-4
buttons, arrow, 8-39

C

Call Stack Pane 8-42
call tree, 5-13
CALL_FROM , 8-40
capacity options 8-15
CD-ROM, 2-5
Change 8-34, 8-35
.class file 8-29, 11-3
Class Path 8-22
setting, 8-16
.Clct file, 3-10, 6-4, 7-2, 9-5
<clinit> method, 8-22
clipboard, 8-6, 8-49
collect
definition, 3-9
file, 7-2
rootcause subcommand, 9-5
Collect File, 8-21
color, background, 8-49
com, in Java package 8-22, 8-23
com.ocsystems.aprobe Java packagé1-3
com.ocsystems.aprobe.Loggerl1-7
com.ocsystems.aprobe.ProbeMethodl 1-6
com.ocsystems.aprobe.ProbeThreadl1-17
com.ocsystems.aprobe.SymbolTahlel1-5
COMMENT, 8-25, 8-41
comment, logging 8-25
compatibility, 2-6
Consider Case 8-27, 8-35
constructor, 8-22
Copy UAL, 8-11

copy/paste 8-49

csh, 9-2

custom Java probes 11-1
cut/paste 8-6

D

Data File, 7-2

Data File Size 8-12

Data Files Pane 8-42

Data node in Workspace Tree 8-3
data, preserving 3-6

.dclct directory, 3-10, 6-4

decollect 3-10, 9-16

Decollect Dialog 8-21

decollection 3-10, 7-2, 9-5

Delete Dynamic Module 8-6

deploy, 1-2, 2-7, 3-2, 3-10, 9-8

Deploy Dialog 6-2, 8-19

deployed workspace 8-14

deployment descriptor filg 3-10, 7-2
Dereference Pointers 8-27

Deselect Function In Trace Setup 8-37
Disable Load Shedding for This Item 8-23
disable tracing, 3-7, 8-25

Display N data files after selected8-14
Display N data files before selected8-13
Don't Trace All In, 8-23

Don't Trace This ltem, 8-22

Don't Trace Wildcards, 8-28

Don't Load Shed Selected Functions8-45
Don’t Prompt for Source Files 8-15
Don't Trace All Lines In Function, 8-23
Don't Trace Selected Functions 8-45
.dply file, 3-10, 6-2, 6-3, 9-18

DTD, for XMJ file, 7-2

dynamic module 8-2, 8-5

dynamically loaded library, 3-10, 8-5

E

Edit Class Path Dialog 8-16, 8-22

Edit Source Path Dialog 8-16

Edit UAL, 8-7

Edit Wildcard Strings Dialog, 8-28
Enable Load Shedding for This Item 8-23
Enable Tracing, 8-25
END_DISPLAYED_DATA, 8-40

ENTER, 5-13, 8-40

Index-2

Index

environment variables 7-1
AP_ROOTCAUSE_ENABLED, 7-8
APROBE, 7-5
APROBE_HOME, 7-5
APROBE_JRE, 8-47
APROBE_LOG, 2-8, 7-5
APROBE_MONOSPACED_FONT, 8-48
APROBE_REGISTRY, 2-8
APROBE_SEARCH_PATH, 7-6
APROBE_WM_WORKAROUND, 8-48
LD_AUDIT, 7-6, 7-7
RC_SHORT_WORKSPACE_LOC, 7-8
RC_WORKSPACE_LOC, 7-8, 8-11

errors, ld.so.1, 10-3

event
Exceptions, 8-34
finding in Trace Index, 8-33
kind, 8-40
selecting, 8-33
Snapshots, 8-34
stepping in, 8-38
tree, 5-13

Event Details Pane 8-42

Event Trace Tree 3-10, 8-40

events 8-31

Examine Process Data 8-8

examples 11-1

Exceed, X emulator 8-47

EXCEPTION, 8-41

Exception event 8-18

Exception Snapshots 8-18

exceptions
Java, 5-8, 8-3
logging, 8-18
snapshot, 8-18
UAL, 8-2, 8-19

EXCP event kind, 8-33

executable 3-10

EXIT, 5-13, 8-40

F

FILE event kind, 8-33

Find, 8-35

Find All, 8-35

Find Button, 8-40

Find Class In Trace Setup 8-37
Find Function In Trace Events 8-38
Find Function In Trace Setup, 8-37

Find Function/Method, 8-23

Find In Index, 8-33

Find In Program Contents Dialog 8-26
Find Source 8-37

Find Source File 8-24

Find Text In Events Dialog 8-35

Find Text in Trace Events 8-38

Find Text in Trace Events Dialog 8-43
FLEXIm, 2-9

flight recorder, 6-2

format, 3-10

ftp, 6-3, 6-4

G

gcg 2-4

gethrtime, 8-25

gethrvtime, 8-25

getMethodld(), 11-6
getPrintableMethodName() 11-5, 11-6
Global Trace Options Dialog 8-27
Glossary, 3-9

Goto File, 8-27

H
heap, Java 7-5, 7-6

Index Process Data 8-8
<init> method, 8-22
install_rootcause 9-2

J

J2EE, 8-6, 8-10, 10-14
JAR, 8-22

Jar file, 8-29

JAR file in workspace, 11-3
Java, 2-4

$javas, 8-22

Java Exceptions Configuration Dialog 8-18
Java Path Dialog 8-17
Java probes 7-2

Java version 8-47

java version, 5-2
JAVA_CLASS_LOAD, 8-41

Index-3

Index

JAVA _CLASS_LOADS, 8-41
java_exceptions UAL 5-8, 8-3
JAVA LOAD_SHED, 4-3, 8-41
JNI, 8-5

JRE, 3-11, 5-2, 8-17, 8-47, 8-49
JVM, 8-15

K

Keep logged data for N previous processe$-12
Kind, in Trace Index, 8-33

Korn shell, 2-3
ksh, 2-3, 9-2
L

Last Data Recorded 8-31, 8-33
ld.so.1 error message 10-3
LD_AUDIT, 10-5, 10-7
LD_AUDIT environment variable, 7-6, 7-7
LD PRELOAD, 10-5
libapaudit.so, 10-3
library, dynamically loaded, 3-10, 8-5
license 2-8, 6-3
LINE, 8-41
Line Number, 8-27
Linux, 2-3, 2-5, 7-7
load shedding 3-7
LOAD_SHED Table, 8-44, 8-45
local, 2-1, 2-7, 3-11
local disk, 3-2
log, 3-2,3-11

from Java, 11-7
Log Comment, 8-25
Log Java Class Loads 8-27
Log Parameters checkbox 5-16
Log Snapshot 5-17, 8-25, 8-34
Log Statistic, 8-25
Log Traceback, 8-25
log(), 11-7
log_env 8-2, 8-42
Logging Exceptions 8-18

M

main class name 8-15

Maximum Logged String Length, 8-28

Maximum number of events in Trace Display 8-13

Maximum number of items in Trace Index, 8-13

method ID, 11-5
method names 8-29
module, 3-11, 5-8

dynamically loaded, 8-5
multi-program applications, 10-13
mwm, 8-47

N

Name of UAL, 8-11

names, for tracing 8-29

New Class Dialog 8-29, 8-37
New Workspace Dialog 8-4, 8-9

O

onEntry, Java method 11-2
onExceptionExit, Java method 11-2
onExit, Java method 11-2

onLine(), Java method 11-8

Open Associated Workspace 4-3, 8-36
open, rootcause subcommand9-15
Options button, 8-26

Options, in Setup meny 8-7

overhead 3-7

P

package, Java 8-22, 8-23

parameters, logging 8-24

PATH, 4-2

PDF, 2-2

performance, 3-2, 11-9

Pi class 5-16

PID, 3-9, 3-11

Plug-in Class 8-11

plug-in for UALs, 8-17

pointers, logging 8-27

popup menu, 8-41
Table Dialog, 8-43, 8-44, 8-45
Trace Setup Dialog, 8-22
Workspace Tree, 8-2

predefined UAL, 3-11, 8-2
exceptions, 8-2
java_exceptions, 8-3
log_env, 8-2, 8-42
sigsegv, 8-3

Index-4

Index

predefined UAL (continued)
user-defined, 8-2
verify, 6-4, 8-3
preferences file 7-4
preserving data 3-6
Probe Action, 8-25
probe deployment descriptor 8-26
probe names 8-29
Probe Trigger, 8-24
ProbeBean 11-10
ProbeMethod, 11-5
probes 3-2, 3-11
Probes Pane 5-17, 8-24
ProbeThreadTrigger, 11-17
PROCESS 8-40
PROCESS DATA, 8-3
Process Data Set3-5, 8-3, 8-31
Process Statistics 8-25
Process, in Trace Index 8-32
program, 3-2, 3-12
changed, 8-5
node in Workspace Tree, 8-2
run, 8-8
Program Contents Tree 5-8, 8-21
Program Information Pane, 8-42
PROGRAM_COMMENT, 8-41

R

rclog, 7-5

red dot, 8-23

Reflection, X emulator 8-47

Refresh 8-36

Refresh Index 8-33

register, 3-12, 5-6, 8-5
rootcause subcommand, 9-17

Register Program 8-5

registry, 3-12, 9-17

Release Notes1-3

remote, 2-1, 2-7, 3-12
computer, 9-5
workspace, 8-14

Remove Probes For All Child Items 8-23

Remove UAL, 8-7

Requires Trace UAL, 8-11

Reset Dynamic Module 8-5

Reset Program 8-5

Reset Program Dialog 8-10

Root Java Modulg 8-22

RootCause

Agent, 3-2, 9-5, 9-17, 9-18

Console, 3-2

starting, 9-15
RootCause agent 2-1, 2-7
rootcause commands 9-3

build, 9-4, 11-4

collect, 6-3, 7-2, 9-5

config, 9-6

decollect, 9-7

deploy, 9-8

log, 9-11

merge, 9-12

new, 9-13

off, 9-14

on, 6-3,9-14

open, 4-2,9-15

register, 7-3, 9-17

run, 4-4, 9-19

status, 9-19

xrun, 9-19
RootCause Console 2-1
rootcause format 3-10
RootCause Log 3-11, 4-2, 8-4, 9-5

decollected, 6-4

size, 9-11
RootCause Main Window 5-7
RootCause Options Dialog 8-12
RootCause Registry 9-5
rootcause.properties 8-49
rootcause_disable 9-2
rootcause_enable 9-2
rootcause_libpath 10-4, 10-8
rootcause_off 4-2, 7-6, 7-7, 7-8, 9-2
rootcause_on 4-2, 5-10, 7-3, 7-6, 7-7, 7-8, 9-2
ROOTCAUSE_SNAPSHOT, 8-26
rootcause_status 9-2
Run Options Tab, 8-15
Run Program Dialog, 8-19
run under RootCausg 3-12
run_with_apaudit, 4-4, 7-8
rusage 8-25

S

saprobe 10-6

Save As Text 8-37, 10-9
Save As XML, 8-37, 10-9
Save As, workspace 8-4

Index-5

Index

Search All Modules 8-27
search path 7-6
secure aprobe 10-6
secure_applications file 10-6
Select Data Files 8-33
Select Data Files Dialog 8-34
Select Events 8-33
Select Events Dialog 8-34
Setup Meny 8-6
setup script, 4-2
sh, 9-2
shadow header file 3-12
shadow header files 10-11
shared library, 3-12, 8-5
shell, Unix, 9-2
sigsegv, predefined UAL 8-3
size of RootCause Log9-11
SNAP event kind 8-33
snapshot 3-4, 3-6, 8-18

probe, 8-25
Solaris, 2-3, 2-5, 7-6, 8-47
Solaris version 8-6, 8-47, 8-49
sort, table column 8-32
source files, finding, 7-6, 8-7, 8-16
Source Options Tah 8-15
Source Pane

Trace Display, 8-42

Trace Setup, 8-24
Source Path, setting 8-16
START_DISPLAYED_DATA , 8-40
START_OF _TRACE, 8-41
starting the GUI, 9-15
statistics, logging 8-25
Step Into Backwards 8-39
Step Into Forward, 8-38
Step Meny 8-38
Step Next Backward 8-38
Step Next Forward 8-38
Step Out Backwards 8-39
Step Out Forward, 8-39
Step Over Backwards 8-39
Step Over Forward, 8-39
Stepping Toolbar, 8-39
stepping, in trace events 8-38
strings, logging 8-28
stripped, 3-12
SYN_CALL_COUNTS, 8-41
SYN_JAVA_CALL_COUNTS, 4-3, 5-13, 5-14, 8-41,

8-43

T

table, 8-43
CALL_COUNTS, 8-41, 8-43
JAVA CLASS LOADS, 8-41, 8-44
LOAD_SHED, 8-44
Show Associated, 8-38
sorting, 8-32, 8-45
Trace Index, 8-31
Table Dialog, 8-43
target method ID, 11-5
TEXT, 7-3, 8-41
text, save as 8-37
Thread, in Trace Index, 8-33
THREAD_END, 8-40
THREAD_START, 8-40
threads, Java 11-17
threads, view events by 8-38, 8-40
Time, in Trace Index, 8-32
time, logging 8-25
time, view events by 8-38, 8-40
Total logged data limit per process 8-13
Trace All In, 8-22, 8-23
Trace All Lines In Function, 8-23
Trace Data Dialog 8-30
Trace Data Files 8-30
Trace Display, 8-35
Trace Index Dialog 3-10, 8-25, 8-31
Trace Setup Dialog 4-3, 5-8, 5-13, 8-21
colored dots in, 8-22
Popup Menu, 8-22
Probes Pane, 8-24
Program Contents Tree, 8-21
Source Pane, 8-24
Variables Pane, 8-24
Trace This Item, 8-22
trace UAL, 8-2
Trace Wildcards, 8-28
TRACEBACK, 8-41
traceback, 8-3, 8-42
logging, 8-25
overhead of, 8-25
tracing, 3-13
disabling, 3-7, 8-25
tree
event trace, 8-40
program contents, 8-21
Workspace, 8-1
trigger, 3-13, 8-24
tuning a trace, 5-13

Index-6

Index

U
UAL, 3-13, 8-2
node in Workspace Tree, 8-2
predefined, 8-2
UAL Description, 8-11
UAL File, 8-11, 8-17
UAL Name, 8-17
UAL Options Dialog, 8-17
Unregister Program, 8-5
Update, 8-34, 8-35

\Y,

Variables Pane 8-24
verify UAL , 6-4, 8-3
version compatibility, 2-6
View Menu, 8-38

W
white papers 1-3
wildcard
in Trace Setup, 8-29
in XMJ file, 11-4
Workspace
Browser, 8-1
Edit Menu, 8-6
Execute Menu, 8-7
Help Menu, 8-8
Message Pane, 8-3
Toolbar, 8-8
Tree, 8-1
Workspace Menu, 8-3
workspace 3-2, 3-13, 5-5, 9-13
JAR file in, 11-3
location, 7-8
rebuilding, 11-4
Workspace Tree 8-1
Data, 8-3
Popup Menu, 8-2
Program, 8-2
UALs, 8-2

Wraparound data logging wraps at N 8-13

X

X windows, 8-47
xmj file, 3-10
XMJ file, 7-2, 11-3
XML, 3-13
Save As, 8-37
XWindows emulators, 8-47

Index-7

	Notice
	CHAPTER 1 Introducing RootCause
	What Is RootCause?
	Java, C++, or Both?
	About This Guide

	CHAPTER 2 Installing RootCause
	Getting Help
	On-line Documentation
	System Requirements
	Reading the CD
	Installing From A Compressed Tar File
	Preparing to Install
	RootCause Console Installation
	RootCause Agent Installation
	Uninstalling RootCause
	Licensing

	CHAPTER 3 Terminology and Concepts
	The RootCause Product
	The RootCause Registry
	The RootCause Log
	Aprobe Product
	RootCause Data Management
	RootCause Overhead Management
	Glossary

	CHAPTER 4 Getting Started
	The Setup Script
	The RootCause Process
	Enabling RootCause for an AIX Application

	CHAPTER 5 RootCause Demo
	Set Up
	Run With RootCause
	View the RootCause Log
	Create a RootCause Workspace
	Define the Trace
	Trace With RootCause
	View The Data Index
	Examine and Revise the Trace
	Tracing The Details
	Where To From Here?

	CHAPTER 6 Deploying the RootCause Workspace
	Installing The RootCause Agent
	Building a “Traceable” Application
	Deploying A RootCause Workspace
	Registering a Deployed Workspace
	Collecting Data At The Remote Site
	Formatting and Viewing the Remotely- Collected Data

	CHAPTER 7 RootCause Files and Environment Variables
	Workspace
	UAL File
	XMJ File
	Data (APD) File
	Process Data Set
	Deploy File
	Collect File
	Decollection
	RootCause Registry
	RootCause Log
	.rootcause Directory
	rootcause.properties
	setup Script
	Environment Variables

	CHAPTER 8 RootCause GUI Reference
	Workspace Browser
	New Workspace Dialog
	Reset Program Dialog
	Add UAL Dialog
	RootCause Options Dialog
	Edit Source Path Dialog
	Edit Class Path Dialog
	Java Path Dialog
	UAL Options Dialog
	Java Exceptions Configuration Dialog
	Run Program Dialog
	Deploy Dialog
	Decollect Data Dialog
	Trace Setup Dialog
	Find In Program Contents Dialog
	Global Trace Options Dialog
	Edit Wildcard Strings Dialog
	Generate Custom XMJ Dialog
	New Class Dialog
	Trace Data Dialog
	Add Process Data Dialog
	Trace Index Dialog
	Select Data Files Dialog
	Select Events Dialog
	Find Text In Events Dialog
	Trace Display
	Find Text in Trace Events Dialog
	Table Dialog
	Platform-Specific GUI Issues

	CHAPTER 9 RootCause Command Reference
	RootCause and Different Shells
	rootcause
	rootcause build
	rootcause collect
	rootcause config
	rootcause decollect
	rootcause deploy
	rootcause format
	rootcause log
	rootcause merge
	rootcause new
	rootcause_off
	rootcause_on
	rootcause open
	rootcause register
	rootcause run
	rootcause xrun
	rootcause status

	CHAPTER 10 Selected Topics
	RootCause and Efficiency Concerns
	Solaris SETUID, and Security Concerns
	64 bit applications
	Logging Controls
	Multiple Application Tracing
	Multiple Executions of a Single Application
	Libraries with No Debug Information
	Your Application and Different JREs
	Using RootCause on an Application with an Embedded JVM
	Tracing Java and C++ In One Program
	RootCause J2EE Support
	RootCause Shipped as Part of Your Application

	CHAPTER 11 Custom Java Probes
	A Simple Example
	Applying One Probe to Many Methods
	Using Method IDs
	Logging Data from Java
	The onLine() Method
	Advanced Custom Java

